
TUM-GIS Sensor Nodes
Release v0.0.1

Dec 16, 2020

Contents

1 Contact and contribution 3

2 Contents 5
2.1 Solar powered Seeeduino . 5

2.1.1 Hardware . 5
2.1.2 Wiring setup . 5
2.1.3 Software . 7
2.1.4 Services . 9
2.1.5 Code files . 9
2.1.6 References . 17

2.2 Indoor Ambient Monitoring . 17
2.2.1 Hardware . 18
2.2.2 Wiring setup . 18
2.2.3 Software . 19
2.2.4 Services . 21
2.2.5 Code files . 21
2.2.6 References . 34

2.3 Feather M0 LoRa in TFA Housing . 34
2.3.1 Hardware . 34
2.3.2 Wiring setup . 36
2.3.3 Software . 38
2.3.4 Services . 40
2.3.5 Code files . 40
2.3.6 References . 53

2.4 Adafruit 32u4 LoRa . 53
2.4.1 Hardware . 53
2.4.2 Software . 54
2.4.3 Services . 56
2.4.4 Code files . 57
2.4.5 References . 68

2.5 Adafruit 32u4 LoRa with Display . 68
2.5.1 Hardware . 68
2.5.2 Software . 70
2.5.3 Services . 72
2.5.4 Code files . 74
2.5.5 References . 87

i

2.6 Adafruit M0 LoRa . 88
2.6.1 Hardware . 88
2.6.2 Software . 90
2.6.3 Services . 91
2.6.4 Code files . 92
2.6.5 References . 100

2.7 Dragino LoRa Arduino Shield . 100
2.7.1 Hardware . 100
2.7.2 Software . 104
2.7.3 Services . 104
2.7.4 Code files . 105
2.7.5 References . 119

2.8 Pycom LoPy4 . 119
2.8.1 Hardware . 119
2.8.2 Software . 121
2.8.3 Services . 122
2.8.4 Code files . 123
2.8.5 References . 127

2.9 Seeeduino LoRaWAN . 128
2.9.1 Hardware . 128
2.9.2 Software . 130
2.9.3 Services . 130
2.9.4 Code files . 132
2.9.5 References . 139

2.10 Seeeduino LoRaWAN with GPS . 139
2.10.1 Hardware . 139
2.10.2 Software . 141
2.10.3 Services . 142
2.10.4 Code files . 144
2.10.5 References . 150

2.11 All-on-one Rpi Node . 151
2.11.1 Hardware . 151
2.11.2 Wiring setup . 152
2.11.3 Software . 152
2.11.4 Services . 155
2.11.5 Code files . 156
2.11.6 References . 163

2.12 Wemos TTGO T-Beam . 163
2.12.1 Hardware . 163
2.12.2 Software . 165
2.12.3 Services . 165
2.12.4 Code files . 165
2.12.5 References . 165

3 Indices and tables 167

ii

TUM-GIS Sensor Nodes, Release v0.0.1

This repo contains documentation, Arduino sketches, and images of our sensor nodes and the sensor services we used.

Contents 1

TUM-GIS Sensor Nodes, Release v0.0.1

2 Contents

CHAPTER 1

Contact and contribution

We are happy for any kind of comments, questions, corrections, and own contributions. Please visit the Github Repo
of this documentation to report a correction, bug, or question or contribute with a pull request.

3

https://github.com/tum-gis/sensor-nodes
https://github.com/tum-gis/sensor-nodes/issues
https://github.com/tum-gis/sensor-nodes/pulls

TUM-GIS Sensor Nodes, Release v0.0.1

4 Chapter 1. Contact and contribution

CHAPTER 2

Contents

2.1 Solar powered Seeeduino

This sensor node is made to showcase a use-case of LoRaWAN sensor node powered using a solar panel. For achieving
this a Seeeduino LoRaWAN microcontroller was used along with a solar panel connected using a solar shield. To show
a generic use-case we have used a temperature and humidity sensor in this case, but it can be easily replaced with some
other sensor as well. The entire setup was carefully placed in the ABS Waterproof case which is an easy to install
water-proof and dust-proof case for an indoor or outdoor sensor installations. However, this case has no provision for
the ventilation unlike the TFA case and so the readings obtained by the sensor may not accurately represent the outdoor
weather conditions. In this example, we measure parameters such as temperature, humidity, and battery voltage.

2.1.1 Hardware

To build this sensor node we have used following hardware components:

• Seeeduino LoRaWAN board V4.2

• Grove - DHT-22 Temperature & Humidity Sensor

• Solar charger shield

• 1.5 W Solar panel

• 0 ohm resistor

• ABS Waterproof case

• 2000 mAH Battery

2.1.2 Wiring setup

First of all, the solar panel is connected with the SOLAR pin and a battery is connected with a BAT pin on the solar
charger shield as shown in the figure below. A DHT-22 Sensor is connected to A2 pin on the Seeeduino board using a
connector cable and then the solar charger shield prepared in the previous step is mounted on the board.

5

https://www.aliexpress.com/item/32806344313.html
https://www.tfa-dostmann.de/en/produkt/protective-cover-for-outdoor-transmitter/
http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
http://wiki.seeedstudio.com/Grove-Temperature_and_Humidity_Sensor_Pro/
http://wiki.seeedstudio.com/Solar_Charger_Shield_V2.2/
https://www.seeedstudio.com/1-5W-Solar-Panel-81X137.html
http://www.learningaboutelectronics.com/Articles/Zero-ohm-resistors
https://www.aliexpress.com/item/32806344313.html
https://www.adafruit.com/product/2011

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 1: Sensor node in ABS Waterproof case.

Fig. 2: Solar shield connections with the solar panel and a battery.

6 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

Apart from this, to measure the voltage of Lipo Battery we need to connect the VBAT pin to Analog pin A0, so that
we can read the data from A0 pin. To achieve this, we need to Short R7 using a 0ohm resistor as shown in the figure
here.

Fig. 3: Short R7 using a 0 ohm resistor for battery voltage measurement.

Final hardware setup looked as following:

Once all these connection were made, the board is connected with a computer using a USB cable. Further, steps of
software part needs to be followed.

2.1.3 Software

To create this node, we use Arduino IDE for setting up the Seeeduino LoRaWAN device. First, install the Seeeduino
LoRaWAN board to your Arduino IDE and select the correct port. Then following libraries needs to be installed before
compiling the code:

• Wire.h to communicate with I2C devices.

• DHT.h for reading DHT-22 sensor.

• RTCZero.h for controlling internal clock for time.

• CayenneLPP.h for Cayenne Protocol.

Apart from this LoRaWan.h library is also used but it is bundled within Seeeduino Board and is not required to be
separately installed.

Now download and run the Arduino Sketch for Solar powered Seeeduino sensor node file in the Arduino IDE. This
code was created by merging the example code of both the sensors and the ttn-otaa example from the lmic library.
Some required changes were made while merging the example codes. The user should change the network session
key, app session key and device address in the code before compiling. These keys can be obtained from the TTN,
SWM or other service providers.

2.1. Solar powered Seeeduino 7

http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
https://github.com/esp8266/Arduino/tree/master/libraries/Wire
https://github.com/Seeed-Studio/Grove_Temperature_And_Humidity_Sensor
https://github.com/arduino-libraries/RTCZero
https://github.com/ElectronicCats/CayenneLPP/archive/master.zip

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 4: Final hardware wiring setup.

Listing 1: Modify the keys in highlighted lines.

1 // The EUIs and the AppKey must be given in big-endian format, i.e. the
2 // most-significant-byte comes first (as displayed in the TTN console).
3 // For TTN issued AppEUIs the first bytes should be 0x70, 0xB3, 0xD5.
4

5 // void setId(char *DevAddr, char *DevEUI, char *AppEUI);
6 lora.setId(NULL, "00942FBXXXXXXXXX", "70B3D57XXXXXXXXX");
7

8 // setKey(char *NwkSKey, char *AppSKey, char *AppKey);
9 lora.setKey(NULL, NULL, "CB89A0AA43F6C5XXXXXXXXXXXXXXXXXX");

Following is the example code that can be used to measure the battery voltage of the Seeed solar charger shield:

8 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

Listing 2: Code for measuring the battery voltage

1 BatteryValue = analogRead(analogInPin);
2 // Calculate the battery voltage value
3 outputValue = (float(BatteryValue)*5)/1023*2;
4 // print the results to the serial monitor:
5 SerialUSB.print("Analog value = ");
6 SerialUSB.print(BatteryValue);
7 SerialUSB.print("\t voltage = ");
8 SerialUSB.println(outputValue);
9 SerialUSB.println("V \n");

2.1.4 Services

This node is connected using the TheThingsNetwork service. Further, a node-red work bench is used to forward this
collected data from the TTN platform to the OGC Sensor Things API configured on the FROST Server. The node-red
workbench that was used for forwarding the data is available at Node red flow for Solar powered Seeeduino sensor node
for Solar powered Seeeduino. To use this node-red-workbench go to the node-red platform https://iot.gis.bgu.tum.de:
1885/, login with the credentials, go to the options and select Import>Clipboard. Select the downloaded .json file with
the given option and click on import. Make necessary changes and deploy the flow.

Datastreams setup for this sensor node on the FROST server can be seen at: http://iot.gis.bgu.tum.de:8081/
FROST-Server-gi3/v1.0/Things(19)/Datastreams

The node-red workbench for this sensor node could be found at: https://iot.gis.bgu.tum.de:1885/#flow/58838bc1.
4ce6a4

The GRAFANA dash-board for visualizing the collected data is available at: https://iot.gis.bgu.tum.de:3050/d/
TfCVFRNWz/solar-powered-seeeduino-with-dht22?orgId=1&refresh=10s

2.1.5 Code files

Listing 3: Arduino Sketch for Solar powered Seeeduino sensor node

1 #include <DHT.h>
2 #include <RTCZero.h>
3 #include <LoRaWan.h>
4 #include <Wire.h>
5 #include <CayenneLPP.h>
6

7 // Keep the following line, if the board is a Seeeduino LoRaWAN with GPS,
8 // otherwise comment the line out
9

10 // #define HAS_GPS 1
11

12 const int analogInPin = A0;
13 #define DHTPIN A2
14 #define DHTTYPE DHT22
15

16 DHT dht(DHTPIN, DHTTYPE);
17

18 int BatteryValue = 0;
19 float outputValue = 0;
20

(continues on next page)

2.1. Solar powered Seeeduino 9

https://iot.gis.bgu.tum.de:1885/
https://iot.gis.bgu.tum.de:1885/
http://iot.gis.bgu.tum.de:8081/FROST-Server-gi3/v1.0/Things(19)/Datastreams
http://iot.gis.bgu.tum.de:8081/FROST-Server-gi3/v1.0/Things(19)/Datastreams
https://iot.gis.bgu.tum.de:1885/#flow/58838bc1.4ce6a4
https://iot.gis.bgu.tum.de:1885/#flow/58838bc1.4ce6a4
https://iot.gis.bgu.tum.de:3050/d/TfCVFRNWz/solar-powered-seeeduino-with-dht22?orgId=1&refresh=10s
https://iot.gis.bgu.tum.de:3050/d/TfCVFRNWz/solar-powered-seeeduino-with-dht22?orgId=1&refresh=10s

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

21 RTCZero rtc;
22 char buffer[256]; // buffer for text messages received from the

→˓LoRaWAN module for display
23

24 CayenneLPP lpp(51);
25

26 void setup(void)
27 {
28 digitalWrite(38, HIGH); // Provide power to the 4 Grove connectors of

→˓the board
29

30 for(int i = 0; i < 26; i ++) // Set all pins to HIGH to save power
→˓(reduces the

31 { // current drawn during deep sleep by around
→˓0.7mA).

32 if (i!=13) { // Don't switch on the onboard user LED (pin
→˓13).

33 pinMode(i, OUTPUT);
34 digitalWrite(i, HIGH);
35 }
36 }
37

38 delay(5000); // Wait 5 secs after reset/booting to give
→˓time for potential upload

39 dht.begin(); // of a new sketch (sketches
→˓cannot be uploaded when in sleep mode)

40 SerialUSB.begin(115200); // Initialize USB/serial connection
41 delay(500);
42 // while(!SerialUSB);
43 SerialUSB.println("Seeeduino LoRaWAN board started!");
44

45 // nrgSave.begin(WAKE_RTC_ALARM);
46 // rtc.begin(TIME_H24);
47

48 #ifdef HAS_GPS
49 Serial.begin(9600); // Initialize serial connection to the GPS

→˓module
50 delay(500);
51 Serial.write("$PMTK161,0*28\r\n"); // Switch GPS module to standby mode as we don

→˓'t use it in this sketch
52 #endif
53

54 lora.init(); // Initialize the LoRaWAN module
55

56 memset(buffer, 0, 256); // clear text buffer
57 lora.getVersion(buffer, 256, 1);
58 memset(buffer, 0, 256); // We call getVersion() two times, because

→˓after a reset the LoRaWAN module can be
59 lora.getVersion(buffer, 256, 1); // in sleep mode and then the first call only

→˓wakes it up and will not be performed.
60 SerialUSB.print(buffer);
61

62 memset(buffer, 0, 256);
63 lora.getId(buffer, 256, 1);
64 SerialUSB.print(buffer);
65

66 // The following three constants (AppEUI, DevEUI, AppKey) must be changed
(continues on next page)

10 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

67 // for every new sensor node. We are using the LoRaWAN OTAA mode (over the
68 // air activation). Each sensor node must be manually registered in the
69 // TTN console at https://console.thethingsnetwork.org before it can be
70 // started. In the TTN console create a new device with the DevEUI also
71 // being automatically generated. After the registration of the device the
72 // three values can be copied from the TTN console. A detailed explanation
73 // of these steps is given in
74 // https://learn.adafruit.com/the-things-network-for-feather?view=all
75

76 // The EUIs and the AppKey must be given in big-endian format, i.e. the
77 // most-significant-byte comes first (as displayed in the TTN console).
78 // For TTN issued AppEUIs the first bytes should be 0x70, 0xB3, 0xD5.
79

80 // void setId(char *DevAddr, char *DevEUI, char *AppEUI);
81 lora.setId(NULL, "00942FBXXXXXXXXX", "70B3D57XXXXXXXXX");
82

83 // setKey(char *NwkSKey, char *AppSKey, char *AppKey);
84 lora.setKey(NULL, NULL, "CB89A0AA43F6C5XXXXXXXXXXXXXXXXXX");
85

86 lora.setDeciveMode(LWOTAA); // select OTAA join mode (note that
→˓setDeciveMode is not a typo; it is misspelled in the library)

87 // lora.setDataRate(DR5, EU868); // SF7, 125 kbps (highest data rate)
88 lora.setDataRate(DR3, EU868); // SF9, 125 kbps (medium data rate and

→˓range)
89 // lora.setDataRate(DR0, EU868); // SF12, 125 kbps (lowest data rate,

→˓highest max. distance)
90

91 // lora.setAdaptiveDataRate(false);
92 lora.setAdaptiveDataRate(true); // automatically adapt the data rate
93

94 lora.setChannel(0, 868.1);
95 lora.setChannel(1, 868.3);
96 lora.setChannel(2, 868.5);
97 lora.setChannel(3, 867.1);
98 lora.setChannel(4, 867.3);
99 lora.setChannel(5, 867.5);

100 lora.setChannel(6, 867.7);
101 lora.setChannel(7, 867.9);
102

103 // The following two commands can be left commented out;
104 // TTN works with the default values. (It also works when
105 // uncommenting the commands, though.)
106 // lora.setReceiceWindowFirst(0, 868.1);
107 // lora.setReceiceWindowSecond(869.525, DR0);
108

109 lora.setDutyCycle(false); // for debugging purposes only - should
→˓normally be activated

110 lora.setJoinDutyCycle(false); // for debugging purposes only - should
→˓normally be activated

111

112 lora.setPower(14); // LoRa transceiver power (14 is the
→˓maximum for the 868 MHz band)

113

114 // while(!lora.setOTAAJoin(JOIN));
115 while(!lora.setOTAAJoin(JOIN,20)); // wait until the node has successfully

→˓joined TTN
116

(continues on next page)

2.1. Solar powered Seeeduino 11

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

117 lora.setPort(33); // all data packets are sent to LoRaWAN
→˓port 33

118 }
119

120 void loop(void)
121 {
122 bool result = false;
123 float temp_hum_val[2] = {0};
124 float temperature, humidity;
125 // Reading temperature or humidity takes about 250 milliseconds!
126 // Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
127

128

129 if(!dht.readTempAndHumidity(temp_hum_val)){
130 SerialUSB.print("Humidity: ");
131 SerialUSB.print(humidity = temp_hum_val[0]);
132 SerialUSB.print(" %\t");
133 SerialUSB.print("Temperature: ");
134 SerialUSB.print(temperature = temp_hum_val[1]);
135 SerialUSB.println(" *C");
136 }
137 else{
138 SerialUSB.println("Failed to get temprature and humidity value.");
139 }
140

141 BatteryValue = analogRead(analogInPin);
142 // Calculate the battery voltage value
143 outputValue = (float(BatteryValue)*5)/1023*2;
144 // print the results to the serial monitor:
145 SerialUSB.print("Analog value = ");
146 SerialUSB.print(BatteryValue);
147 SerialUSB.print("\t voltage = ");
148 SerialUSB.println(outputValue);
149 SerialUSB.println("V \n");
150

151 SerialUSB.println("-- LOOP");
152 lpp.reset();
153 lpp.addTemperature(1, temperature);
154 lpp.addRelativeHumidity(2, humidity);
155 lpp.addAnalogInput(3, outputValue);
156

157 result = lora.transferPacket(lpp.getBuffer(), lpp.getSize(), 5); // send the
→˓data packet (n byts) with a default timeout of 5 secs

158

159 if(result)
160 {
161 short length;
162 short rssi;
163

164 memset(buffer, 0, 256);
165 length = lora.receivePacket(buffer, 256, &rssi);
166

167 if(length)
168 {
169 SerialUSB.print("Length is: ");
170 SerialUSB.println(length);
171 SerialUSB.print("RSSI is: ");

(continues on next page)

12 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

172 SerialUSB.println(rssi);
173 SerialUSB.print("Data is: ");
174 for(unsigned char i = 0; i < length; i ++)
175 {
176 SerialUSB.print("0x");
177 SerialUSB.print(buffer[i], HEX);
178 SerialUSB.print(" ");
179 }
180 SerialUSB.println();
181 }
182 }
183

184 lora.setDeviceLowPower(); // bring the LoRaWAN module to sleep mode
185 doSleep((5*60-8)*1000); // deep sleep for 292 secs (+ 3 secs transmission

→˓time + 5 secs timeout = 300 secs period)
186 lora.setPort(33); // send some command to wake up the LoRaWAN module

→˓again
187 }
188

189 // The following function implements deep sleep waiting. When being called the
190 // CPU goes into deep sleep mode (for power saving). It is woken up again by
191 // the CPU-internal real time clock (RTC) after the configured time.
192 //
193 // A similar function would also be available in the standard "ArduinoLowPower"

→˓library.
194 // However, in order to be able to use that library with the Seeeduino LoRaWAN board,
195 // four files in the package "Seeed SAMD boards by Seeed Studio Version 1.3.0" that is
196 // installed using the Arduino IDE board manager need to be patched. The reason is

→˓that
197 // Seeed Studio have not updated their files to a recent Arduino SAMD version yet
198 // and the official "ArduinoLowPower" library provided by the Arduino foundation is
199 // referring to some missing functions. For further information see here:
200 // https://forum.arduino.cc/index.php?topic=603900.0 and here:
201 // https://github.com/arduino/ArduinoCore-samd/commit/

→˓b9ac48c782ca4b82ffd7e65bf2c956152386d82b
202

203 void doSleep(uint32_t millis) {
204 if (!rtc.isConfigured()) { // if called for the first time,
205 rtc.begin(false); // then initialize the real time clock (RTC)
206 }
207

208 uint32_t now = rtc.getEpoch();
209 rtc.setAlarmEpoch(now + millis/1000);
210 rtc.enableAlarm(rtc.MATCH_HHMMSS);
211

212 rtc.standbyMode(); // bring CPU into deep sleep mode (until woken up
→˓by the RTC)

213 }

Listing 4: Node red flow for Solar powered Seeeduino sensor node

1 [
2 {
3 "id": "58838bc1.4ce6a4",
4 "type": "tab",
5 "label": "Device1",

(continues on next page)

2.1. Solar powered Seeeduino 13

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

6 "disabled": false,
7 "info": ""
8 },
9 {

10 "id": "daeb7602.698d18",
11 "type": "switch",
12 "z": "58838bc1.4ce6a4",
13 "name": "Separate",
14 "property": "key",
15 "propertyType": "msg",
16 "rules": [
17 {
18 "t": "cont",
19 "v": "temperature",
20 "vt": "str"
21 },
22 {
23 "t": "cont",
24 "v": "humidity",
25 "vt": "str"
26 },
27 {
28 "t": "cont",
29 "v": "analog",
30 "vt": "str"
31 },
32 {
33 "t": "else"
34 }
35],
36 "checkall": "true",
37 "repair": false,
38 "outputs": 4,
39 "x": 220,
40 "y": 180,
41 "wires": [
42 [
43 "a3a522a5.a81a9"
44],
45 [
46 "367717e8.191318"
47],
48 [
49 "466fd2c5.586efc"
50],
51 []
52]
53 },
54 {
55 "id": "e2798231.c9314",
56 "type": "split",
57 "z": "58838bc1.4ce6a4",
58 "name": "",
59 "splt": "\\n",
60 "spltType": "str",
61 "arraySplt": 1,
62 "arraySpltType": "len",

(continues on next page)

14 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

63 "stream": false,
64 "addname": "key",
65 "x": 90,
66 "y": 180,
67 "wires": [
68 [
69 "daeb7602.698d18"
70]
71]
72 },
73 {
74 "id": "5c3e3ed9.0b4dd",
75 "type": "debug",
76 "z": "58838bc1.4ce6a4",
77 "name": "",
78 "active": false,
79 "tosidebar": true,
80 "console": false,
81 "tostatus": false,
82 "complete": "false",
83 "x": 810,
84 "y": 180,
85 "wires": []
86 },
87 {
88 "id": "367717e8.191318",
89 "type": "function",
90 "z": "58838bc1.4ce6a4",
91 "name": "Humidity",
92 "func": "var humValue = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": humValue, \"Datastream\": {\"@iot.id\": 102}} };\nnewMessage.headers
→˓= {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

93 "outputs": 1,
94 "noerr": 0,
95 "x": 440,
96 "y": 200,
97 "wires": [
98 [
99 "c777922b.84784"

100]
101]
102 },
103 {
104 "id": "c777922b.84784",
105 "type": "http request",
106 "z": "58838bc1.4ce6a4",
107 "name": "POST Observation",
108 "method": "POST",
109 "ret": "obj",
110 "paytoqs": false,
111 "url": "http://iot.gis.bgu.tum.de:8081/FROST-Server-gi3/v1.0/Observations",
112 "tls": "",
113 "proxy": "",
114 "authType": "basic",
115 "x": 630,
116 "y": 180,
117 "wires": [

(continues on next page)

2.1. Solar powered Seeeduino 15

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

118 [
119 "5c3e3ed9.0b4dd"
120]
121]
122 },
123 {
124 "id": "a3a522a5.a81a9",
125 "type": "function",
126 "z": "58838bc1.4ce6a4",
127 "name": "Temperature",
128 "func": "var tempValue = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": tempValue, \"Datastream\": {\"@iot.id\": 101}} };\nnewMessage.
→˓headers = {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

129 "outputs": 1,
130 "noerr": 0,
131 "x": 450,
132 "y": 160,
133 "wires": [
134 [
135 "c777922b.84784"
136]
137]
138 },
139 {
140 "id": "41ae6239.73f9bc",
141 "type": "ttn uplink",
142 "z": "58838bc1.4ce6a4",
143 "name": "TTN Input",
144 "app": "58ceff1f.8576a",
145 "dev_id": "tum-gis-device1",
146 "field": "",
147 "x": 80,
148 "y": 60,
149 "wires": [
150 [
151 "491bb4da.0eb58c"
152]
153]
154 },
155 {
156 "id": "491bb4da.0eb58c",
157 "type": "cayennelpp-decoder",
158 "z": "58838bc1.4ce6a4",
159 "name": "",
160 "x": 280,
161 "y": 60,
162 "wires": [
163 [
164 "e2798231.c9314",
165 "f2d3534b.0f44f"
166]
167]
168 },
169 {
170 "id": "466fd2c5.586efc",
171 "type": "function",
172 "z": "58838bc1.4ce6a4",

(continues on next page)

16 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

173 "name": "Battery Voltage",
174 "func": "var batteryvolt = msg.payload.valueOf();\nvar newMessage = {

→˓payload: { \"result\": batteryvolt, \"Datastream\": {\"@iot.id\": 104}} };
→˓\nnewMessage.headers = {\"Content-type\" : \"application/json\"}\nreturn newMessage;
→˓",

175 "outputs": 1,
176 "noerr": 0,
177 "x": 440,
178 "y": 240,
179 "wires": [
180 [
181 "c777922b.84784"
182]
183]
184 },
185 {
186 "id": "f2d3534b.0f44f",
187 "type": "debug",
188 "z": "58838bc1.4ce6a4",
189 "name": "",
190 "active": true,
191 "tosidebar": true,
192 "console": false,
193 "tostatus": false,
194 "complete": "false",
195 "x": 490,
196 "y": 60,
197 "wires": []
198 },
199 {
200 "id": "58ceff1f.8576a",
201 "type": "ttn app",
202 "z": "",
203 "appId": "gis-tum-sensors",
204 "accessKey": "ttn-account-ACCESSKEY_HERE",
205 "discovery": "discovery.thethingsnetwork.org:1900"
206 }
207]

2.1.6 References

• Arduino Sketch for Solar powered Seeeduino sensor node

• Node red flow for Solar powered Seeeduino sensor node

• Wiki guide for Seeeduino LoRaWAN board

• Adding Seeed boards to Arduino IDE

• Seeed Solar charger shield guide

2.2 Indoor Ambient Monitoring

This sensor node is made to showcase a use-case of LoRaWAN for indoor ambience monitoring. For achieving this a
multitude of sensors were used which can monitor the quality of the ambience. In this example we measure parameters

2.2. Indoor Ambient Monitoring 17

http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
http://wiki.seeedstudio.com/Seeed_Arduino_Boards/
http://wiki.seeedstudio.com/Solar_Charger_Shield_V2.2/

TUM-GIS Sensor Nodes, Release v0.0.1

such as temperature, humidity, air pressure, air quality, CO2, loudness, gas, PM2.5, and light.

Fig. 5: Hardware setup.

2.2.1 Hardware

To realize the objective, following components were used:

• Seeeduino LoRaWAN board V4.2

• Grove Base Shield Arduino V2

• Grove - Air Quality Sensor

• Grove - Loudness Sensor

• Grove - Digital Light Sensor

• Grove - BME680 Sensor

• Grove - Laser PM2.5 Sensor (HM3301)

• MHZ19B CO2 Sensor

• Micro USB Charger

2.2.2 Wiring setup

First of all, the grove base shield was connected over the Seeeduino LoRaWAN board. The board was set at the 5V
mode. Then, the sensor connections were made using the connector cables as following:

18 Chapter 2. Contents

http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
https://www.seeedstudio.com/Base-Shield-V2.html
http://wiki.seeedstudio.com/Grove-Air_Quality_Sensor_v1.3/
http://wiki.seeedstudio.com/Grove-Loudness_Sensor/
http://wiki.seeedstudio.com/Grove-Digital_Light_Sensor/
http://wiki.seeedstudio.com/Grove-Temperature_Humidity_Pressure_Gas_Sensor_BME680/
http://wiki.seeedstudio.com/Grove-Laser_PM2.5_Sensor-HM3301/
https://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf

TUM-GIS Sensor Nodes, Release v0.0.1

• Loudness Sensor – Analog Pin A0

• PM 2.5 Sensor – I2C pin

• Digital Light Sensor – I2C pin

• BME680 Sensor – I2C pin

• MHZ19B CO2 Sensor – Digital Pin D4

• Air Quality Sensor - A2

Apart from this, there is no need of any other wiring in this case.

Fig. 6: Hardware connections.

Once all these connection were made, the board is connected with a computer using a USB cable. Further, steps of
software part needs to be followed.

2.2.3 Software

To create this node, we use Arduino IDE for setting up the Seeeduino LoRaWAN device. First, install the Seeeduino
LoRaWAN board board to your Arduino IDE and select the correct port. Then following libraries needs to be installed
before compiling the code:

2.2. Indoor Ambient Monitoring 19

http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/

TUM-GIS Sensor Nodes, Release v0.0.1

• Digital_Light_TSL2561.h for Digital Light Sensor

• Air_Quality_Sensor.h for Air Quality Sensor

• Seeed_bme680.h for BME680 Sensor

• Seeed_HM330X.h for Laser PM2.5 Sensor

• MHZ19.h for MHZ19B CO2 Sensor

• Wire.h to communicate with I2C devices

• SoftwareSerial.h for Serial Communication

• RTCZero.h for controlling internal clock for time

• CayenneLPP.h for Cayenne Protocol

Apart from this LoRaWan.h library is also used but it is bundled within Seeeduino Board and is not required to be
separately installed.

Now download and run the Arduino Sketch for Indoor Ambient Monitoring sensor node file in the Arduino IDE.
This code was created by merging the example code of each of these attached sensor and the ttn-otaa example from
the Seeeduino board. Some required changes were made while merging the example codes. For example, as there
are multiple sensors each needs to be defined with a unique name. So, here HM330X was named as sensor while
AirqualitySensor as sensors.

Listing 5: Setup the sensors in Arduino Sketch for Indoor Ambient Mon-
itoring sensor node

1 AirQualitySensor sensors(A2);
2

3 SoftwareSerial ss(4,5);
4 MHZ19 mhz(&ss);
5

6 #define BME_SCK 13
7 #define BME_MISO 12
8 #define BME_MOSI 11
9 #define BME_CS 10

10

11 #define IIC_ADDR uint8_t(0x76)
12 Seeed_BME680 bme680(IIC_ADDR);
13

14 int loudness,a;
15

16 HM330X sensor;
17 u8 buf[30];

The user should change the network session key, app session key and device address in the code before compiling.
These keys can be obtained from the TTN, SWM or any other service providers.

Listing 6: Modify the keys in highlighted lines

1 // The EUIs and the AppKey must be given in big-endian format, i.e. the
2 // most-significant-byte comes first (as displayed in the TTN console).
3 // For TTN issued AppEUIs the first bytes should be 0x70, 0xB3, 0xD5.
4

5 // void setId(char *DevAddr, char *DevEUI, char *AppEUI);
6 lora.setId(NULL, "00942FBXXXXXXXXX", "70B3D57XXXXXXXXX");
7

(continues on next page)

20 Chapter 2. Contents

https://github.com/Seeed-Studio/Grove_Digital_Light_Sensor/archive/master.zip
https://github.com/Seeed-Studio/Grove_Air_quality_Sensor
https://github.com/Seeed-Studio/Seeed_BME680
https://github.com/Seeed-Studio/Seeed_PM2_5_sensor_HM3301
https://github.com/strange-v/MHZ19
https://github.com/esp8266/Arduino/tree/master/libraries/Wire
https://github.com/PaulStoffregen/SoftwareSerial
https://github.com/arduino-libraries/RTCZero
https://github.com/ElectronicCats/CayenneLPP/archive/master.zip

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

8 // setKey(char *NwkSKey, char *AppSKey, char *AppKey);
9 lora.setKey(NULL, NULL, "CB89A0AA43F6C5XXXXXXXXXXXXXXXXXX");

2.2.4 Services

This node is connected using the TheThingsNetwork service. Further, a node-red work bench is used to forward this
collected data from the TTN platform to the OGC Sensor Things API configured on the FROST Server. The node-red
workbench that was used for forwarding the data is available at Node red flow for Indoor Ambient Monitoring sensor
node. To use this node-red-workbench go to the node-red platform https://iot.gis.bgu.tum.de:1885/, login with the
credentials, go to the options and select Import>Clipboard. Select the downloaded .json file with the given option and
click on import. Make necessary changes and deploy the flow.

Datastreams setup for this sensor node on the FROST server can be seen at: http://iot.gis.bgu.tum.de:8081/
FROST-Server-gi3/v1.0/Things(21)/Datastreams

The node-red workbench for this sensor node could be found at: https://iot.gis.bgu.tum.de:1885/#flow/7d5c6b14.
d2af94

The GRAFANA dash-board for visualizing the collected data is available at: https://iot.gis.bgu.tum.de:3050/d/
jDJ1li1Wz/indoor-ambient-monitoring-with-seeeduino-lorawan-and-sensors?orgId=1

2.2.5 Code files

Listing 7: Arduino Sketch for Indoor Ambient Monitoring sensor node

1 #include <Wire.h>
2 #include <Digital_Light_TSL2561.h>
3 #include "Air_Quality_Sensor.h"
4 #include "seeed_bme680.h"
5 #include "Seeed_HM330X.h"
6 #include <SoftwareSerial.h>
7 #include <MHZ19.h>
8 #include <RTCZero.h>
9 #include <LoRaWan.h>

10 #include <CayenneLPP.h>
11

12 RTCZero rtc;
13 char buffer[256]; // buffer for text messages received from the

→˓LoRaWAN module for display
14

15 CayenneLPP lpp(51);
16

17 AirQualitySensor sensors(A2);
18

19 SoftwareSerial ss(4,5);
20 MHZ19 mhz(&ss);
21

22 #define BME_SCK 13
23 #define BME_MISO 12
24 #define BME_MOSI 11
25 #define BME_CS 10
26

27 #define IIC_ADDR uint8_t(0x76)
28 Seeed_BME680 bme680(IIC_ADDR);

(continues on next page)

2.2. Indoor Ambient Monitoring 21

https://iot.gis.bgu.tum.de:1885/
http://iot.gis.bgu.tum.de:8081/FROST-Server-gi3/v1.0/Things(21)/Datastreams
http://iot.gis.bgu.tum.de:8081/FROST-Server-gi3/v1.0/Things(21)/Datastreams
https://iot.gis.bgu.tum.de:1885/#flow/7d5c6b14.d2af94
https://iot.gis.bgu.tum.de:1885/#flow/7d5c6b14.d2af94
https://iot.gis.bgu.tum.de:3050/d/jDJ1li1Wz/indoor-ambient-monitoring-with-seeeduino-lorawan-and-sensors?orgId=1
https://iot.gis.bgu.tum.de:3050/d/jDJ1li1Wz/indoor-ambient-monitoring-with-seeeduino-lorawan-and-sensors?orgId=1

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

29

30 int loudness,a;
31

32 HM330X sensor;
33 u8 buf[30];
34

35 const char *str[]={"sensor num: ","PM1.0 concentration(CF=1,Standard particulate
→˓matter,unit:ug/m3): ",

36 "PM2.5 concentration(CF=1,Standard particulate matter,unit:ug/
→˓m3): ",

37 "PM10 concentration(CF=1,Standard particulate matter,unit:ug/m3):
→˓",

38 "PM1.0 concentration(Atmospheric environment,unit:ug/m3): ",
39 "PM2.5 concentration(Atmospheric environment,unit:ug/m3): ",
40 "PM10 concentration(Atmospheric environment,unit:ug/m3): ",
41 };
42

43 err_t print_result(const char* str,u16 value)
44 {
45 if(NULL==str)
46 return ERROR_PARAM;
47 SerialUSB.print(str);
48 SerialUSB.println(value);
49 return NO_ERROR;
50 }
51

52 /*parse buf with 29 u8-data*/
53 err_t parse_result(u8 *data)
54 {
55 u16 value=0;
56 err_t NO_ERROR;
57 if(NULL==data)
58 return ERROR_PARAM;
59 for(int i=1;i<8;i++)
60 {
61 value = (u16)data[i*2]<<8|data[i*2+1];
62 print_result(str[i-1],value);
63 if(i==6)
64 { a=value;
65 SerialUSB.println(a);
66 }
67 }
68 }
69

70 err_t parse_result_value(u8 *data)
71 {
72 if(NULL==data)
73 return ERROR_PARAM;
74 for(int i=0;i<28;i++)
75 {
76 SerialUSB.print(data[i],HEX);
77 SerialUSB.print(" ");
78 if((0==(i)%5)||(0==i))
79 {
80 SerialUSB.println(" ");
81 }
82 }

(continues on next page)

22 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

83 u8 sum=0;
84 for(int i=0;i<28;i++)
85 {
86 sum+=data[i];
87 }
88 if(sum!=data[28])
89 {
90 SerialUSB.println("wrong checkSum!!!!");
91 }
92 SerialUSB.println(" ");
93 SerialUSB.println(" ");
94 return NO_ERROR;
95 }
96

97

98 void setup()
99 {

100 Wire.begin();
101

102 for(int i = 0; i < 26; i ++) // Set all pins to HIGH to save power (reduces
→˓the

103 { // current drawn during deep sleep by around
→˓0.7mA).

104 if (i!=13) { // Don't switch on the onboard user LED (pin
→˓13).

105 pinMode(i, OUTPUT);
106 digitalWrite(i, HIGH);
107 }
108 }
109

110 delay(5000);
111

112 SerialUSB.begin(115200);
113 delay(100);
114 SerialUSB.println("SerialUSB start");
115

116 lora.init(); // Initialize the LoRaWAN module
117

118 memset(buffer, 0, 256); // clear text buffer
119 lora.getVersion(buffer, 256, 1);
120 memset(buffer, 0, 256); // We call getVersion() two times, because

→˓after a reset the LoRaWAN module can be
121 lora.getVersion(buffer, 256, 1); // in sleep mode and then the first call only

→˓wakes it up and will not be performed.
122 SerialUSB.print(buffer);
123

124 memset(buffer, 0, 256);
125 lora.getId(buffer, 256, 1);
126 SerialUSB.print(buffer);
127

128 // The following three constants (AppEUI, DevEUI, AppKey) must be changed
129 // for every new sensor node. We are using the LoRaWAN OTAA mode (over the
130 // air activation). Each sensor node must be manually registered in the
131 // TTN console at https://console.thethingsnetwork.org before it can be
132 // started. In the TTN console create a new device with the DevEUI also
133 // being automatically generated. After the registration of the device the
134 // three values can be copied from the TTN console. A detailed explanation

(continues on next page)

2.2. Indoor Ambient Monitoring 23

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

135 // of these steps is given in
136 // https://learn.adafruit.com/the-things-network-for-feather?view=all
137

138 // The EUIs and the AppKey must be given in big-endian format, i.e. the
139 // most-significant-byte comes first (as displayed in the TTN console).
140 // For TTN issued AppEUIs the first bytes should be 0x70, 0xB3, 0xD5.
141

142 // void setId(char *DevAddr, char *DevEUI, char *AppEUI);
143 lora.setId(NULL, "00942FBXXXXXXXXX", "70B3D57XXXXXXXXX");
144

145 // setKey(char *NwkSKey, char *AppSKey, char *AppKey);
146 lora.setKey(NULL, NULL, "CB89A0AA43F6C5XXXXXXXXXXXXXXXXXX");
147

148 lora.setDeciveMode(LWOTAA); // select OTAA join mode (note that
→˓setDeciveMode is not a typo; it is misspelled in the library)

149 // lora.setDataRate(DR5, EU868); // SF7, 125 kbps (highest data rate)
150 lora.setDataRate(DR3, EU868); // SF9, 125 kbps (medium data rate and

→˓range)
151 // lora.setDataRate(DR0, EU868); // SF12, 125 kbps (lowest data rate,

→˓highest max. distance)
152

153 // lora.setAdaptiveDataRate(false);
154 lora.setAdaptiveDataRate(true); // automatically adapt the data rate
155

156 lora.setChannel(0, 868.1);
157 lora.setChannel(1, 868.3);
158 lora.setChannel(2, 868.5);
159 lora.setChannel(3, 867.1);
160 lora.setChannel(4, 867.3);
161 lora.setChannel(5, 867.5);
162 lora.setChannel(6, 867.7);
163 lora.setChannel(7, 867.9);
164

165 // The following two commands can be left commented out;
166 // TTN works with the default values. (It also works when
167 // uncommenting the commands, though.)
168 // lora.setReceiceWindowFirst(0, 868.1);
169 // lora.setReceiceWindowSecond(869.525, DR0);
170

171 lora.setDutyCycle(false); // for debugging purposes only - should
→˓normally be activated

172 lora.setJoinDutyCycle(false); // for debugging purposes only - should
→˓normally be activated

173

174 lora.setPower(14); // LoRa transceiver power (14 is the
→˓maximum for the 868 MHz band)

175

176 // while(!lora.setOTAAJoin(JOIN));
177 while(!lora.setOTAAJoin(JOIN,20)); // wait until the node has successfully

→˓joined TTN
178

179 lora.setPort(33);
180

181 if(sensor.init())
182 {
183 SerialUSB.println("HM330X init failed!!!");
184 while(1);

(continues on next page)

24 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

185 }
186

187 if (sensors.init()) {
188 SerialUSB.println("Sensor ready.");
189 }
190 else {
191 SerialUSB.println("Sensor ERROR!");
192 }
193

194 TSL2561.init();
195

196 while (!bme680.init())
197 {
198 SerialUSB.println("bme680 init failed ! can't find device!");
199 delay(10000);
200 }
201

202 ss.begin(9600);
203

204 }
205

206 void loop()
207 {
208 bool result = false;
209 float temperature,humidity,pressure,airquality,light,gas,CO2;
210

211 loudness = analogRead(0);
212 SerialUSB.print("The Loudness Sensor value is: ");
213 SerialUSB.println(loudness);
214 SerialUSB.println();
215 delay(3000);
216

217 int quality = sensors.slope();
218

219 SerialUSB.print("Air Quality Sensor value is: ");
220 SerialUSB.println(airquality=sensors.getValue());
221

222 if (quality == AirQualitySensor::FORCE_SIGNAL) {
223 SerialUSB.println("High pollution! Force signal active.");
224 }
225 else if (quality == AirQualitySensor::HIGH_POLLUTION) {
226 SerialUSB.println("High pollution!");
227 }
228 else if (quality == AirQualitySensor::LOW_POLLUTION) {
229 SerialUSB.println("Low pollution!");
230 }
231 else if (quality == AirQualitySensor::FRESH_AIR) {
232 SerialUSB.println("Fresh air.");
233 }
234 SerialUSB.println();
235 delay(3000);
236

237 SerialUSB.print("The Light Sensor value is: ");
238 SerialUSB.println(light=TSL2561.readVisibleLux());
239 SerialUSB.println();
240 delay(3000);
241

(continues on next page)

2.2. Indoor Ambient Monitoring 25

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

242 if(sensor.read_sensor_value(buf,29))
243 {
244 SerialUSB.println("HM330X read result failed!!!");
245 }
246 parse_result_value(buf);
247 parse_result(buf);
248 SerialUSB.println(" ");
249 delay(3000);
250

251 if (bme680.read_sensor_data())
252 {
253 SerialUSB.println("Failed to perform reading :(");
254 return;
255 }
256 SerialUSB.print("temperature ===>> ");
257 SerialUSB.print(temperature = bme680.sensor_result_value.temperature);
258 SerialUSB.println(" C");
259

260 SerialUSB.print("pressure ===>> ");
261 SerialUSB.print(pressure = bme680.sensor_result_value.pressure/ 1000.0);
262 SerialUSB.println(" KPa");
263

264 SerialUSB.print("humidity ===>> ");
265 SerialUSB.print(humidity = bme680.sensor_result_value.humidity);
266 SerialUSB.println(" %");
267

268 SerialUSB.print("gas ===>> ");
269 SerialUSB.print(gas = bme680.sensor_result_value.gas/ 1000.0);
270 SerialUSB.println(" Kohms");
271

272 SerialUSB.println();
273

274 delay(3000);
275

276 MHZ19_RESULT response = mhz.retrieveData();
277 if (response == MHZ19_RESULT_OK)
278 {
279 SerialUSB.print(F("CO2: "));
280 SerialUSB.println(CO2=mhz.getCO2());
281 SerialUSB.print(F("Min CO2: "));
282 SerialUSB.println(mhz.getMinCO2());
283 SerialUSB.print(F("Temperature: "));
284 SerialUSB.println(mhz.getTemperature());
285 SerialUSB.print(F("Accuracy: "));
286 SerialUSB.println(mhz.getAccuracy());
287 SerialUSB.println();
288 }
289 else
290 {
291 SerialUSB.print(F("Error, code: "));
292 SerialUSB.println(response);
293 }
294

295 lpp.reset();
296 lpp.addTemperature(1, temperature);
297 lpp.addRelativeHumidity(2, humidity);
298 lpp.addAnalogInput(3, airquality);

(continues on next page)

26 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

299 lpp.addLuminosity(4, light);
300 lpp.addBarometricPressure(5, pressure);
301 lpp.addLuminosity(6, CO2);
302 lpp.addAnalogInput(7, gas);
303 lpp.addLuminosity(8, loudness);
304 lpp.addLuminosity(9, a);
305 result = lora.transferPacket(lpp.getBuffer(), lpp.getSize(), 5); // send the

→˓data packet (n byts) with a default timeout of 5 secs
306

307 if(result)
308 {
309 short length;
310 short rssi;
311

312 memset(buffer, 0, 256);
313 length = lora.receivePacket(buffer, 256, &rssi);
314

315 if(length)
316 {
317 SerialUSB.print("Length is: ");
318 SerialUSB.println(length);
319 SerialUSB.print("RSSI is: ");
320 SerialUSB.println(rssi);
321 SerialUSB.print("Data is: ");
322 for(unsigned char i = 0; i < length; i ++)
323 {
324 SerialUSB.print("0x");
325 SerialUSB.print(buffer[i], HEX);
326 SerialUSB.print(" ");
327 }
328 SerialUSB.println();
329 }
330 }
331

332 lora.setDeviceLowPower(); // bring the LoRaWAN module to sleep mode
333 doSleep((5*60-8)*1000); // deep sleep for 292 secs (+ 3 secs transmission

→˓time + 5 secs timeout = 300 secs period)
334 lora.setPort(33);
335

336 }
337

338 void doSleep(uint32_t millis) {
339 if (!rtc.isConfigured()) { // if called for the first time,
340 rtc.begin(false); // then initialize the real time clock (RTC)
341 }
342

343 uint32_t now = rtc.getEpoch();
344 rtc.setAlarmEpoch(now + millis/1000);
345 rtc.enableAlarm(rtc.MATCH_HHMMSS);
346

347 rtc.standbyMode(); // bring CPU into deep sleep mode (until woken up
→˓by the RTC)

348 }

2.2. Indoor Ambient Monitoring 27

TUM-GIS Sensor Nodes, Release v0.0.1

Listing 8: Node red flow for Indoor Ambient Monitoring sensor node

1 [
2 {
3 "id": "7d5c6b14.d2af94",
4 "type": "tab",
5 "label": "Device3",
6 "disabled": false,
7 "info": ""
8 },
9 {

10 "id": "4d581d8.f14c0e4",
11 "type": "switch",
12 "z": "7d5c6b14.d2af94",
13 "name": "Separate",
14 "property": "key",
15 "propertyType": "msg",
16 "rules": [
17 {
18 "t": "cont",
19 "v": "temperature_1",
20 "vt": "str"
21 },
22 {
23 "t": "cont",
24 "v": "humidity",
25 "vt": "str"
26 },
27 {
28 "t": "cont",
29 "v": "analog_in_3",
30 "vt": "str"
31 },
32 {
33 "t": "cont",
34 "v": "luminosity_4",
35 "vt": "str"
36 },
37 {
38 "t": "cont",
39 "v": "barometric",
40 "vt": "str"
41 },
42 {
43 "t": "cont",
44 "v": "luminosity_6",
45 "vt": "str"
46 },
47 {
48 "t": "cont",
49 "v": "analog_in_7",
50 "vt": "str"
51 },
52 {
53 "t": "cont",
54 "v": "luminosity_8",
55 "vt": "str"

(continues on next page)

28 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

56 },
57 {
58 "t": "cont",
59 "v": "luminosity_9",
60 "vt": "str"
61 }
62],
63 "checkall": "true",
64 "repair": false,
65 "outputs": 9,
66 "x": 220,
67 "y": 180,
68 "wires": [
69 [
70 "92425d9f.bca98"
71],
72 [
73 "9b919750.d6fff8"
74],
75 [
76 "620b1ab2.a69224"
77],
78 [
79 "eee677bf.fe16d8"
80],
81 [
82 "4b424590.139b4c"
83],
84 [
85 "bc3f8433.7b89f8"
86],
87 [
88 "13968bca.c2cd34"
89],
90 [
91 "c7fcb372.4b2df"
92],
93 [
94 "b52fa683.7c5fb8"
95]
96]
97 },
98 {
99 "id": "9010a80d.dfcdb8",

100 "type": "split",
101 "z": "7d5c6b14.d2af94",
102 "name": "",
103 "splt": "\\n",
104 "spltType": "str",
105 "arraySplt": 1,
106 "arraySpltType": "len",
107 "stream": false,
108 "addname": "key",
109 "x": 90,
110 "y": 180,
111 "wires": [
112 [

(continues on next page)

2.2. Indoor Ambient Monitoring 29

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

113 "4d581d8.f14c0e4"
114]
115]
116 },
117 {
118 "id": "a3b86e6f.56637",
119 "type": "debug",
120 "z": "7d5c6b14.d2af94",
121 "name": "",
122 "active": false,
123 "tosidebar": true,
124 "console": false,
125 "tostatus": false,
126 "complete": "false",
127 "x": 870,
128 "y": 240,
129 "wires": []
130 },
131 {
132 "id": "9b919750.d6fff8",
133 "type": "function",
134 "z": "7d5c6b14.d2af94",
135 "name": "Humidity",
136 "func": "var humValue = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": humValue, \"Datastream\": {\"@iot.id\": 113}} };\nnewMessage.headers
→˓= {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

137 "outputs": 1,
138 "noerr": 0,
139 "x": 440,
140 "y": 200,
141 "wires": [
142 [
143 "c67491fc.f4755"
144]
145]
146 },
147 {
148 "id": "c67491fc.f4755",
149 "type": "http request",
150 "z": "7d5c6b14.d2af94",
151 "name": "POST Observation",
152 "method": "POST",
153 "ret": "obj",
154 "paytoqs": false,
155 "url": "http://iot.gis.bgu.tum.de:8081/FROST-Server-gi3/v1.0/Observations",
156 "tls": "",
157 "proxy": "",
158 "authType": "basic",
159 "x": 690,
160 "y": 240,
161 "wires": [
162 [
163 "a3b86e6f.56637"
164]
165]
166 },
167 {

(continues on next page)

30 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

168 "id": "92425d9f.bca98",
169 "type": "function",
170 "z": "7d5c6b14.d2af94",
171 "name": "Temperature",
172 "func": "var tempValue = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": tempValue, \"Datastream\": {\"@iot.id\": 112}} };\nnewMessage.
→˓headers = {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

173 "outputs": 1,
174 "noerr": 0,
175 "x": 450,
176 "y": 160,
177 "wires": [
178 [
179 "c67491fc.f4755"
180]
181]
182 },
183 {
184 "id": "a16b3beb.1a5028",
185 "type": "debug",
186 "z": "7d5c6b14.d2af94",
187 "name": "",
188 "active": true,
189 "tosidebar": true,
190 "console": false,
191 "tostatus": false,
192 "complete": "payload",
193 "targetType": "msg",
194 "x": 490,
195 "y": 60,
196 "wires": []
197 },
198 {
199 "id": "681442b7.1266ac",
200 "type": "ttn uplink",
201 "z": "7d5c6b14.d2af94",
202 "name": "TTN Input",
203 "app": "58ceff1f.8576a",
204 "dev_id": "tum-gis-device3",
205 "field": "",
206 "x": 80,
207 "y": 60,
208 "wires": [
209 [
210 "531b0b35.751284"
211]
212]
213 },
214 {
215 "id": "531b0b35.751284",
216 "type": "cayennelpp-decoder",
217 "z": "7d5c6b14.d2af94",
218 "name": "",
219 "x": 260,
220 "y": 60,
221 "wires": [
222 [

(continues on next page)

2.2. Indoor Ambient Monitoring 31

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

223 "9010a80d.dfcdb8",
224 "a16b3beb.1a5028"
225]
226]
227 },
228 {
229 "id": "620b1ab2.a69224",
230 "type": "function",
231 "z": "7d5c6b14.d2af94",
232 "name": "Air Quality",
233 "func": "var quality = msg.payload.valueOf();\nvar newMessage = { payload: {

→˓ \"result\": quality, \"Datastream\": {\"@iot.id\": 119}} };\nnewMessage.headers =
→˓{\"Content-type\" : \"application/json\"}\nreturn newMessage;",

234 "outputs": 1,
235 "noerr": 0,
236 "x": 450,
237 "y": 240,
238 "wires": [
239 [
240 "c67491fc.f4755"
241]
242]
243 },
244 {
245 "id": "eee677bf.fe16d8",
246 "type": "function",
247 "z": "7d5c6b14.d2af94",
248 "name": "Light",
249 "func": "var light = msg.payload.valueOf();\nvar newMessage = { payload: { \

→˓"result\": light, \"Datastream\": {\"@iot.id\": 117}} };\nnewMessage.headers = {\
→˓"Content-type\" : \"application/json\"}\nreturn newMessage;",

250 "outputs": 1,
251 "noerr": 0,
252 "x": 430,
253 "y": 280,
254 "wires": [
255 [
256 "c67491fc.f4755"
257]
258]
259 },
260 {
261 "id": "4b424590.139b4c",
262 "type": "function",
263 "z": "7d5c6b14.d2af94",
264 "name": "Barometric Pressure",
265 "func": "var pressure = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": pressure, \"Datastream\": {\"@iot.id\": 114}} };\nnewMessage.headers
→˓= {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

266 "outputs": 1,
267 "noerr": 0,
268 "x": 480,
269 "y": 320,
270 "wires": [
271 [
272 "c67491fc.f4755"
273]

(continues on next page)

32 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

274]
275 },
276 {
277 "id": "bc3f8433.7b89f8",
278 "type": "function",
279 "z": "7d5c6b14.d2af94",
280 "name": "co2",
281 "func": "var co2 = msg.payload.valueOf();\nvar newMessage = { payload: { \

→˓"result\": co2, \"Datastream\": {\"@iot.id\": 118}} };\nnewMessage.headers = {\
→˓"Content-type\" : \"application/json\"}\nreturn newMessage;",

282 "outputs": 1,
283 "noerr": 0,
284 "x": 430,
285 "y": 360,
286 "wires": [
287 [
288 "c67491fc.f4755"
289]
290]
291 },
292 {
293 "id": "13968bca.c2cd34",
294 "type": "function",
295 "z": "7d5c6b14.d2af94",
296 "name": "Gas",
297 "func": "var gas = msg.payload.valueOf();\nvar newMessage = { payload: { \

→˓"result\": gas, \"Datastream\": {\"@iot.id\": 121}} };\nnewMessage.headers = {\
→˓"Content-type\" : \"application/json\"}\nreturn newMessage;",

298 "outputs": 1,
299 "noerr": 0,
300 "x": 430,
301 "y": 400,
302 "wires": [
303 [
304 "c67491fc.f4755"
305]
306]
307 },
308 {
309 "id": "c7fcb372.4b2df",
310 "type": "function",
311 "z": "7d5c6b14.d2af94",
312 "name": "Loudness",
313 "func": "var loudness = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": loudness, \"Datastream\": {\"@iot.id\": 120}} };\nnewMessage.headers
→˓= {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

314 "outputs": 1,
315 "noerr": 0,
316 "x": 440,
317 "y": 440,
318 "wires": [
319 [
320 "c67491fc.f4755"
321]
322]
323 },
324 {

(continues on next page)

2.2. Indoor Ambient Monitoring 33

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

325 "id": "b52fa683.7c5fb8",
326 "type": "function",
327 "z": "7d5c6b14.d2af94",
328 "name": "Dust-PM2.5",
329 "func": "var Dust = msg.payload.valueOf();\nvar newMessage = { payload: { \

→˓"result\": Dust, \"Datastream\": {\"@iot.id\": 128}} };\nnewMessage.headers = {\
→˓"Content-type\" : \"application/json\"}\nreturn newMessage;",

330 "outputs": 1,
331 "noerr": 0,
332 "x": 450,
333 "y": 480,
334 "wires": [
335 [
336 "c67491fc.f4755"
337]
338]
339 },
340 {
341 "id": "58ceff1f.8576a",
342 "type": "ttn app",
343 "z": "",
344 "appId": "gis-tum-sensors",
345 "accessKey": "ttn-account-ACCESSKEY_HERE",
346 "discovery": "discovery.thethingsnetwork.org:1900"
347 }
348]

2.2.6 References

• Arduino Sketch for Indoor Ambient Monitoring sensor node

• Node red flow for Indoor Ambient Monitoring sensor node

• Wiki guide for Seeeduino LoRaWAN board

• Adding Seeed boards to Arduino IDE

2.3 Feather M0 LoRa in TFA Housing

This sensor node is made to showcase a use-case of LoRaWAN technology for outdoor weather monitoring. For
achieving this a Feather M0 LoRa module was used with temperature and pressure sensor. The entire setup was
carefully placed in the TFA Housing which is an all-weather protective cover for outdoor transmitters. In this example
we measure parameters such as temperature, humidity, altitude, and air pressure.

2.3.1 Hardware

To build this sensor node we have used following hardware components:

• Adafruit Feather M0 LoRA board

• Grove - DHT-22 Temperature & Humidity Sensor

• Grove - Barometric Pressure Sensor

34 Chapter 2. Contents

http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
http://wiki.seeedstudio.com/Seeed_Arduino_Boards/
https://www.tfa-dostmann.de/en/produkt/protective-cover-for-outdoor-transmitter/
https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module
http://wiki.seeedstudio.com/Grove-Temperature_and_Humidity_Sensor_Pro/
http://wiki.seeedstudio.com/Grove-Barometer_Sensor/

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 7: Sensor node in TFA Housing.

2.3. Feather M0 LoRa in TFA Housing 35

TUM-GIS Sensor Nodes, Release v0.0.1

• Breadboard

• TFA Protective Cover

• 6600 mAH Battery

Fig. 8: Inside view of Sensor node in TFA Housing

Also, as the final hardware setup with antenna couldn’t completely fit into the casing, a small hole was made at the
bottom of the casing to allow the remaining portion of antenna to stay outside.

2.3.2 Wiring setup

First of all, the Feather M0 LoRa board was prepared by soldering the board with the provided grid of pins. Then the
board is connected with the sensors using a breadboard. The sensor connections were made using the connector cables
as following:

DHT-22 Sensor connections:

• Feather 3V to DHT22 pin 1

• Feather GND to DHT22 pin 4

• Feather pin 12 to DHT22 pin 2

36 Chapter 2. Contents

https://en.wikipedia.org/wiki/Breadboard#/media/File:400_points_breadboard.jpg
https://www.tfa-dostmann.de/en/produkt/protective-cover-for-outdoor-transmitter/
https://www.adafruit.com/product/353

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 9: Bottom view of Sensor node in TFA Housing

2.3. Feather M0 LoRa in TFA Housing 37

TUM-GIS Sensor Nodes, Release v0.0.1

• Resistor between DHT pin 1 and DHT pin 2

Fig. 10: Wiring with DHT-22 Sensor

Grove-Barometer Sensor connections:

• Feather SCL to Barometer Sensor pin 1 (yellow)

• Feather SDA to Barometer Sensor pin 2 (white)

• Feather 3V to Barometer Sensor pin 3 (red)

• Feather GND to Barometer Sensor pin 4 (black)

Apart from this, Feather pin 6 should be permanently wired with Feather pin io1 as shown in the figure above.

To ensure the durable connections, smaller jumper wires were used on the breadboard instead of longer connecting
cables. Sensors and cables were also supported with an insulating duct tape.

Final hardware setup looked as following:

Once all these connection were made, the board is connected with a computer using a USB cable. Further, steps of
software part needs to be followed.

2.3.3 Software

To create this node, we use Arduino IDE for setting up the Feather M0 LoRa module. First, install the Feather M0
LoRa board to your Arduino IDE and select the correct port. Then following libraries needs to be installed before
compiling the code:

• lmic.h for implementing LoRaWAN on Arduino hardware.

• hal/hal.h bundled with lmic library.

• Adafruit_SleepyDog.h for controlling low power sleep mode.

• Wire.h to communicate with I2C devices.

38 Chapter 2. Contents

https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module/setup
https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module/setup
https://github.com/matthijskooijman/arduino-lmic/archive/master.zip
https://github.com/adafruit/Adafruit_SleepyDog
https://github.com/esp8266/Arduino/tree/master/libraries/Wire

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 11: Final hardware wiring

• BMP085.h for Barometer sensor.

• DHT.h for reading DHT-22 sensor.

• CayenneLPP.h for Cayenne Protocol.

Apart from this, SPI.h library is also used for communicating with serial peripheral interface but it is already inbuilt in
Arduino IDE and is not required to be separately installed.

Now download and run the Arduino Sketch for Outdoor Weather Monitoring sensor node file in the Arduino IDE. This
code was created by merging the example code of both the sensors and the ttn-otaa example from the lmic library.
Some required changes were made while merging the example codes. The user should change the network session
key, app session key and device address in the code before compiling. These keys can be obtained from the TTN,
SWM or other service providers.

Listing 9: Modify the keys in highlighted lines.

1 // LoRaWAN NwkSKey, network session key
2 // This should be in big-endian (aka msb).
3 static const PROGMEM u1_t NWKSKEY[16] = {NETWORK_SESSION_KEY_HERE_IN_MSB_FORMAT};
4

5 // LoRaWAN AppSKey, application session key
6 // This should also be in big-endian (aka msb).
7 static const u1_t PROGMEM APPSKEY[16] = {APPLICATION_SESSION_KEY_HERE_IN_MSB_FORMAT};
8

9 // LoRaWAN end-device address (DevAddr)
10 // See http://thethingsnetwork.org/wiki/AddressSpace
11 // The library converts the address to network byte order as needed, so this should

→˓be in big-endian (aka msb) too.
12 static const u4_t DEVADDR = 0x260XXXXX ; // <-- Change this address for every node!

The pin mapping configured in the code should also be verified for the board that is being used. Current pin mapping
is set as per the Feather M0 LoRa board.

2.3. Feather M0 LoRa in TFA Housing 39

https://raw.githubusercontent.com/SeeedDocument/Grove-Barometer_Sensor/master/res/Barometer_Sensor.zip
https://github.com/Seeed-Studio/Grove_Temperature_And_Humidity_Sensor
https://github.com/ElectronicCats/CayenneLPP/archive/master.zip

TUM-GIS Sensor Nodes, Release v0.0.1

Listing 10: Set the correct pin mapping for the board that is used.

1 // Pin mapping
2 const lmic_pinmap lmic_pins = {
3 .nss = 8,
4 .rxtx = LMIC_UNUSED_PIN,
5 .rst = 4,
6 .dio = {3, 6, LMIC_UNUSED_PIN},

Following is the example code that can be used to measure the battery voltage of the Feather M0 LoRa board:

Listing 11: Code for measuring the battery voltage

1 measuredvbat = analogRead(VBATPIN);
2 measuredvbat *= 2; // we divided by 2, so multiply back
3 measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage
4 measuredvbat /= 1024; // convert to voltage
5

6 SERIALDEBUG_PRINT(" %\t");
7 SERIALDEBUG_PRINT("Battery Voltage: ");

2.3.4 Services

This node is connected using the TheThingsNetwork service. Further, a node-red work bench is used to forward this
collected data from the TTN platform to the OGC Sensor Things API configured on the FROST Server. The node-red
workbench that was used for forwarding the data is available at Node red flow for Outdoor Weather Monitoring sensor
node. To use this node-red-workbench go to the node-red platform https://iot.gis.bgu.tum.de:1885/, login with the
credentials, go to the options and select Import>Clipboard. Select the downloaded .json file with the given option and
click on import. Make necessary changes and deploy the flow.

Datastreams setup for this sensor node on the FROST server can be seen at: http://iot.gis.bgu.tum.de:8081/
FROST-Server-gi3/v1.0/Things(20)/Datastreams

The node-red workbench for this sensor node could be found at: https://iot.gis.bgu.tum.de:1885/#flow/f6f7a740.
c6b338

The GRAFANA dash-board for visualizing the collected data is available at: https://iot.gis.bgu.tum.de:3050/d/
sMJ3jAAWz/featherm0lora-in-tfa-housing?orgId=1

2.3.5 Code files

Listing 12: Arduino Sketch for Outdoor Weather Monitoring sensor node

1 /***
2 * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
3 *
4 *
5 *
6 *
7 * Permission is hereby granted, free of charge, to anyone
8 * obtaining a copy of this document and accompanying files,
9 * to do whatever they want with them without any restriction,

10 * including, but not limited to, copying, modification and redistribution.
11 * NO WARRANTY OF ANY KIND IS PROVIDED.

(continues on next page)

40 Chapter 2. Contents

https://iot.gis.bgu.tum.de:1885/
http://iot.gis.bgu.tum.de:8081/FROST-Server-gi3/v1.0/Things(20)/Datastreams
http://iot.gis.bgu.tum.de:8081/FROST-Server-gi3/v1.0/Things(20)/Datastreams
https://iot.gis.bgu.tum.de:1885/#flow/f6f7a740.c6b338
https://iot.gis.bgu.tum.de:1885/#flow/f6f7a740.c6b338
https://iot.gis.bgu.tum.de:3050/d/sMJ3jAAWz/featherm0lora-in-tfa-housing?orgId=1
https://iot.gis.bgu.tum.de:3050/d/sMJ3jAAWz/featherm0lora-in-tfa-housing?orgId=1

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

12 *
13 * This example sends a valid LoRaWAN packet with payload "Hello,
14 * world!", using frequency and encryption settings matching those of
15 * the The Things Network.
16 *
17 * This uses ABP (Activation-by-personalisation), where a DevAddr and
18 * Session keys are preconfigured (unlike OTAA, where a DevEUI and
19 * application key is configured, while the DevAddr and session keys are
20 * assigned/generated in the over-the-air-activation procedure).
21 *
22 * Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
23 * g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
24 * violated by this sketch when left running for longer)!
25 *
26 * To use this sketch, first register your application and device with
27 * the things network, to set or generate a DevAddr, NwkSKey and
28 * AppSKey. Each device should have their own unique values for these
29 * fields.
30 *
31 * Do not forget to define the radio type correctly in config.h.
32 *
33 ***/
34 // #define SERIALDEBUG
35

36 #ifdef SERIALDEBUG
37 #define SERIALDEBUG_PRINT(...) Serial.print(__VA_ARGS__)
38 #define SERIALDEBUG_PRINTLN(...) Serial.println(__VA_ARGS__)
39 #else
40 #define SERIALDEBUG_PRINT(...)
41 #define SERIALDEBUG_PRINTLN(...)
42 #endif
43

44

45 #include <lmic.h>
46 #include <hal/hal.h>
47 #include <SPI.h>
48 #include <Adafruit_SleepyDog.h>
49 #include <DHT.h>
50 #include <CayenneLPP.h>
51 #include "BMP085.h"
52 #include <Wire.h>
53

54 CayenneLPP lpp(51);
55

56 #define DHTPIN 12 // Pin which is connected to the DHT sensor.
57 #define DHTTYPE DHT22 // DHT 22 (AM2302)
58

59 // DHT_Unified dht(DHTPIN, DHTTYPE);
60 DHT dht(DHTPIN, DHTTYPE);
61

62 #define VBATPIN A7
63

64 float temperature2;
65 float pressure;
66 float atm;
67 float altitude;
68 BMP085 myBarometer;

(continues on next page)

2.3. Feather M0 LoRa in TFA Housing 41

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

69

70 // LoRaWAN NwkSKey, network session key
71 // This should be in big-endian (aka msb).
72 static const PROGMEM u1_t NWKSKEY[16] = {NETWORK_SESSION_KEY_HERE_IN_MSB_FORMAT};
73

74 // LoRaWAN AppSKey, application session key
75 // This should also be in big-endian (aka msb).
76 static const u1_t PROGMEM APPSKEY[16] = {APPLICATION_SESSION_KEY_HERE_IN_MSB_FORMAT};
77

78 // LoRaWAN end-device address (DevAddr)
79 // See http://thethingsnetwork.org/wiki/AddressSpace
80 // The library converts the address to network byte order as needed, so this should

→˓be in big-endian (aka msb) too.
81 static const u4_t DEVADDR = 0x260XXXXX ; // <-- Change this address for every node!
82

83 // These callbacks are only used in over-the-air activation, so they are
84 // left empty here (we cannot leave them out completely unless
85 // DISABLE_JOIN is set in config.h, otherwise the linker will complain).
86 void os_getArtEui (u1_t* buf) { }
87 void os_getDevEui (u1_t* buf) { }
88 void os_getDevKey (u1_t* buf) { }
89

90 static osjob_t sendjob;
91

92 // Schedule TX every this many seconds (might become longer due to duty
93 // cycle limitations).
94 const unsigned TX_INTERVAL = 1; // seconds transmit cycle plus ...
95 const unsigned SLEEP_TIME = 60*9+55; // seconds sleep time plus ...
96 const unsigned MEASURE_TIME = 2; // seconds measuring time should lead to ...
97 // 5 minute(s) total cycle time
98

99 // Pin mapping
100 const lmic_pinmap lmic_pins = {
101 .nss = 8,
102 .rxtx = LMIC_UNUSED_PIN,
103 .rst = 4,
104 .dio = {3, 6, LMIC_UNUSED_PIN},
105 };
106

107

108 void onEvent (ev_t ev) {
109 // Serial.print(os_getTime());
110 // Serial.print(": ");
111 SERIALDEBUG_PRINT(os_getTime());
112 SERIALDEBUG_PRINT(": ");
113 switch(ev) {
114 case EV_SCAN_TIMEOUT:
115 SERIALDEBUG_PRINTLN(F("EV_SCAN_TIMEOUT"));
116 break;
117 case EV_BEACON_FOUND:
118 SERIALDEBUG_PRINTLN(F("EV_BEACON_FOUND"));
119 break;
120 case EV_BEACON_MISSED:
121 SERIALDEBUG_PRINTLN(F("EV_BEACON_MISSED"));
122 break;
123 case EV_BEACON_TRACKED:
124 SERIALDEBUG_PRINTLN(F("EV_BEACON_TRACKED"));

(continues on next page)

42 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

125 break;
126 case EV_JOINING:
127 SERIALDEBUG_PRINTLN(F("EV_JOINING"));
128 break;
129 case EV_JOINED:
130 SERIALDEBUG_PRINTLN(F("EV_JOINED"));
131 break;
132 case EV_RFU1:
133 SERIALDEBUG_PRINTLN(F("EV_RFU1"));
134 break;
135 case EV_JOIN_FAILED:
136 SERIALDEBUG_PRINTLN(F("EV_JOIN_FAILED"));
137 break;
138 case EV_REJOIN_FAILED:
139 SERIALDEBUG_PRINTLN(F("EV_REJOIN_FAILED"));
140 break;
141 case EV_TXCOMPLETE:
142 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the

→˓voltage LOW
143 SERIALDEBUG_PRINTLN(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
144 if (LMIC.txrxFlags & TXRX_ACK)
145 SERIALDEBUG_PRINTLN(F("Received ack"));
146 if (LMIC.dataLen) {
147 SERIALDEBUG_PRINT(F("Received "));
148 SERIALDEBUG_PRINT(LMIC.dataLen);
149 SERIALDEBUG_PRINTLN(F(" bytes of payload"));
150 }
151 // Schedule next transmission
152 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_

→˓send);
153

154 SERIALDEBUG_PRINTLN("going to sleep now ... ");
155 // lmic library sleeps automatically after transmission has been completed
156 for(int i= 0; i < SLEEP_TIME / 16; i++) {
157 Watchdog.sleep(16000); // maximum seems to be 16 seconds
158 SERIALDEBUG_PRINT('.');
159 }
160 if (SLEEP_TIME % 16) {
161 Watchdog.sleep((SLEEP_TIME % 16)*1000);
162 SERIALDEBUG_PRINT('*');
163 }
164 SERIALDEBUG_PRINTLN("... woke up again");
165

166 break;
167 case EV_LOST_TSYNC:
168 SERIALDEBUG_PRINTLN(F("EV_LOST_TSYNC"));
169 break;
170 case EV_RESET:
171 SERIALDEBUG_PRINTLN(F("EV_RESET"));
172 break;
173 case EV_RXCOMPLETE:
174 // data received in ping slot
175 SERIALDEBUG_PRINTLN(F("EV_RXCOMPLETE"));
176 break;
177 case EV_LINK_DEAD:
178 SERIALDEBUG_PRINTLN(F("EV_LINK_DEAD"));
179 break;

(continues on next page)

2.3. Feather M0 LoRa in TFA Housing 43

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

180 case EV_LINK_ALIVE:
181 SERIALDEBUG_PRINTLN(F("EV_LINK_ALIVE"));
182 break;
183 default:
184 SERIALDEBUG_PRINTLN(F("Unknown event"));
185 break;
186 }
187 }
188

189 void do_send(osjob_t* j){
190 // Check if there is not a current TX/RX job running
191 if (LMIC.opmode & OP_TXRXPEND) {
192 SERIALDEBUG_PRINTLN(F("OP_TXRXPEND, not sending"));
193 } else {
194 // Prepare upstream data transmission at the next possible time.
195

196 float temperature, humidity, measuredvbat;
197 int16_t int16_temperature, int16_humidity, int16_vbat;
198

199 // Start a measurement to update the sensor's internal temperature & humidity
→˓reading

200 SERIALDEBUG_PRINTLN("Start measurement...");
201 temperature = dht.readTemperature();
202 // delay(2000);
203 Watchdog.sleep(2000);
204 // Now read the recently measured temperature (2 secs ago) as Celsius (the

→˓default)
205 temperature = dht.readTemperature();
206 // Read the recently measured humidity (2 secs ago)
207 humidity = dht.readHumidity();
208 SERIALDEBUG_PRINTLN("... finished!");
209

210 // Check if any reads failed and exit early (to try again).
211 if (isnan(humidity) || isnan(temperature)) {
212 SERIALDEBUG_PRINTLN("Failed to read from DHT sensor!");
213 for (int i=0; i<5; i++) {
214 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on by making the

→˓voltage HIGH
215 delay(150);
216 digitalWrite(LED_BUILTIN, LOW); // turn the LED on by making the

→˓voltage HIGH
217 delay(150);
218 }
219 // ok, then wait for another period and try it again
220 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_

→˓send);
221 } else {
222 SERIALDEBUG_PRINT("Humidity: ");
223 SERIALDEBUG_PRINT(humidity);
224 SERIALDEBUG_PRINT(" %\t");
225 SERIALDEBUG_PRINT("Temperature: ");
226 SERIALDEBUG_PRINT(temperature);
227 SERIALDEBUG_PRINT(" *C ");
228

229 measuredvbat = analogRead(VBATPIN);
230 measuredvbat *= 2; // we divided by 2, so multiply back
231 measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage

(continues on next page)

44 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

232 measuredvbat /= 1024; // convert to voltage
233

234 SERIALDEBUG_PRINT(" %\t");
235 SERIALDEBUG_PRINT("Battery Voltage: ");
236 SERIALDEBUG_PRINTLN(measuredvbat);
237

238 temperature2 = myBarometer.bmp085GetTemperature(myBarometer.
→˓bmp085ReadUT()); //Get the temperature, bmp085ReadUT MUST be called first

239 pressure = myBarometer.bmp085GetPressure(myBarometer.bmp085ReadUP());//
→˓Get the temperature

240

241 /*
242 To specify a more accurate altitude, enter the correct mean sea level
243 pressure level. For example, if the current pressure level is 1019.00 hPa
244 enter 101900 since we include two decimal places in the integer value
245 */
246 altitude = myBarometer.calcAltitude(pressure);
247

248 atm = pressure / 101325;
249

250 lpp.reset();
251 lpp.addTemperature(1, temperature);
252 lpp.addRelativeHumidity(2, humidity);
253 lpp.addAnalogInput(3, measuredvbat);
254 lpp.addTemperature(4, temperature2);
255 lpp.addBarometricPressure(5, pressure/100);
256 lpp.addAnalogInput(6, atm);
257 lpp.addAnalogInput(7, altitude);
258

259 // LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
260

261 // send the 6 bytes payload to LoRaWAN port 7
262 LMIC_setTxData2(7, lpp.getBuffer(), lpp.getSize(), 0);
263 SERIALDEBUG_PRINTLN(F("Packet queued"));
264 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on by making the

→˓voltage HIGH
265 }
266

267 // LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
268 // Serial.println(F("Packet queued"));
269 }
270 // Next TX is scheduled after TX_COMPLETE event.
271 }
272

273 void setup() {
274 delay(5000);
275

276 pinMode(LED_BUILTIN, OUTPUT);
277 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
278

279 #ifdef SERIALDEBUG
280 Serial.begin(9600);
281 // while (!Serial);
282 #endif
283

284 dht.begin();
285 myBarometer.init();

(continues on next page)

2.3. Feather M0 LoRa in TFA Housing 45

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

286 SERIALDEBUG_PRINTLN(F("Starting"));
287

288 #ifdef VCC_ENABLE
289 // For Pinoccio Scout boards
290 pinMode(VCC_ENABLE, OUTPUT);
291 digitalWrite(VCC_ENABLE, HIGH);
292 delay(1000);
293 #endif
294

295 // LMIC init
296 os_init();
297 // Reset the MAC state. Session and pending data transfers will be discarded.
298 LMIC_reset();
299 LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
300

301 // Set static session parameters. Instead of dynamically establishing a session
302 // by joining the network, precomputed session parameters are be provided.
303 #ifdef PROGMEM
304 // On AVR, these values are stored in flash and only copied to RAM
305 // once. Copy them to a temporary buffer here, LMIC_setSession will
306 // copy them into a buffer of its own again.
307 uint8_t appskey[sizeof(APPSKEY)];
308 uint8_t nwkskey[sizeof(NWKSKEY)];
309 memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
310 memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
311 LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
312 #else
313 // If not running an AVR with PROGMEM, just use the arrays directly
314 LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
315 #endif
316

317 #if defined(CFG_eu868)
318 // Set up the channels used by the Things Network, which corresponds
319 // to the defaults of most gateways. Without this, only three base
320 // channels from the LoRaWAN specification are used, which certainly
321 // works, so it is good for debugging, but can overload those
322 // frequencies, so be sure to configure the full frequency range of
323 // your network here (unless your network autoconfigures them).
324 // Setting up channels should happen after LMIC_setSession, as that
325 // configures the minimal channel set.
326 // NA-US channels 0-71 are configured automatically
327 LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
328 LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);

→˓// g-band
329 LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
330 LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
331 LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
332 LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
333 LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
334 LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
(continues on next page)

46 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

335 LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI);
→˓// g2-band

336 // TTN defines an additional channel at 869.525Mhz using SF9 for class B
337 // devices' ping slots. LMIC does not have an easy way to define set this
338 // frequency and support for class B is spotty and untested, so this
339 // frequency is not configured here.
340 #elif defined(CFG_us915)
341 // NA-US channels 0-71 are configured automatically
342 // but only one group of 8 should (a subband) should be active
343 // TTN recommends the second sub band, 1 in a zero based count.
344 // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.

→˓json
345 LMIC_selectSubBand(1);
346 #endif
347

348 // Disable link check validation
349 LMIC_setLinkCheckMode(0);
350

351 // TTN uses SF9 for its RX2 window.
352 LMIC.dn2Dr = DR_SF9;
353

354 // Set data rate and transmit power for uplink (note: txpow seems to be ignored
→˓by the library)

355 LMIC_setDrTxpow(DR_SF7,14);
356

357 // Start job
358 do_send(&sendjob);
359 }
360

361 void loop() {
362 os_runloop_once();
363 }

Listing 13: Node red flow for Outdoor Weather Monitoring sensor node

1 [
2 {
3 "id": "f6f7a740.c6b338",
4 "type": "tab",
5 "label": "Device 2",
6 "disabled": false,
7 "info": ""
8 },
9 {

10 "id": "fafe9ad3.9659e8",
11 "type": "switch",
12 "z": "f6f7a740.c6b338",
13 "name": "Separate",
14 "property": "key",
15 "propertyType": "msg",
16 "rules": [
17 {
18 "t": "cont",
19 "v": "temperature_1",
20 "vt": "str"
21 },

(continues on next page)

2.3. Feather M0 LoRa in TFA Housing 47

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

22 {
23 "t": "cont",
24 "v": "humidity",
25 "vt": "str"
26 },
27 {
28 "t": "cont",
29 "v": "analog_in_3",
30 "vt": "str"
31 },
32 {
33 "t": "cont",
34 "v": "temperature_4",
35 "vt": "str"
36 },
37 {
38 "t": "cont",
39 "v": "barometric",
40 "vt": "str"
41 },
42 {
43 "t": "cont",
44 "v": "analog_in_6",
45 "vt": "str"
46 },
47 {
48 "t": "cont",
49 "v": "analog_in_7",
50 "vt": "str"
51 }
52],
53 "checkall": "true",
54 "repair": false,
55 "outputs": 7,
56 "x": 220,
57 "y": 180,
58 "wires": [
59 [
60 "492a1844.49a228"
61],
62 [
63 "b5be1839.3121a8"
64],
65 [
66 "d7e35050.187eb"
67],
68 [
69 "c5363ad1.5d3418"
70],
71 [
72 "ee2891fa.0dbbe"
73],
74 [
75 "71354cb4.e6af04"
76],
77 [
78 "d48c0c97.4eb08"

(continues on next page)

48 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

79]
80]
81 },
82 {
83 "id": "ccb2fb81.aacd58",
84 "type": "split",
85 "z": "f6f7a740.c6b338",
86 "name": "",
87 "splt": "\\n",
88 "spltType": "str",
89 "arraySplt": 1,
90 "arraySpltType": "len",
91 "stream": false,
92 "addname": "key",
93 "x": 90,
94 "y": 180,
95 "wires": [
96 [
97 "fafe9ad3.9659e8"
98]
99]

100 },
101 {
102 "id": "657fd8a7.01c5e8",
103 "type": "debug",
104 "z": "f6f7a740.c6b338",
105 "name": "",
106 "active": false,
107 "tosidebar": true,
108 "console": false,
109 "tostatus": false,
110 "complete": "false",
111 "x": 870,
112 "y": 240,
113 "wires": []
114 },
115 {
116 "id": "b5be1839.3121a8",
117 "type": "function",
118 "z": "f6f7a740.c6b338",
119 "name": "Humidity",
120 "func": "var humValue = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": humValue, \"Datastream\": {\"@iot.id\": 106}} };\nnewMessage.headers
→˓= {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

121 "outputs": 1,
122 "noerr": 0,
123 "x": 440,
124 "y": 200,
125 "wires": [
126 [
127 "dd5d521b.5c984"
128]
129]
130 },
131 {
132 "id": "dd5d521b.5c984",
133 "type": "http request",

(continues on next page)

2.3. Feather M0 LoRa in TFA Housing 49

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

134 "z": "f6f7a740.c6b338",
135 "name": "POST Observation",
136 "method": "POST",
137 "ret": "obj",
138 "paytoqs": false,
139 "url": "http://iot.gis.bgu.tum.de:8081/FROST-Server-gi3/v1.0/Observations",
140 "tls": "",
141 "proxy": "",
142 "authType": "basic",
143 "x": 690,
144 "y": 240,
145 "wires": [
146 [
147 "657fd8a7.01c5e8"
148]
149]
150 },
151 {
152 "id": "492a1844.49a228",
153 "type": "function",
154 "z": "f6f7a740.c6b338",
155 "name": "Temperature",
156 "func": "var tempValue = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": tempValue, \"Datastream\": {\"@iot.id\": 105}} };\nnewMessage.
→˓headers = {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

157 "outputs": 1,
158 "noerr": 0,
159 "x": 450,
160 "y": 160,
161 "wires": [
162 [
163 "dd5d521b.5c984"
164]
165]
166 },
167 {
168 "id": "739d03d0.606a6c",
169 "type": "debug",
170 "z": "f6f7a740.c6b338",
171 "name": "",
172 "active": true,
173 "tosidebar": true,
174 "console": false,
175 "tostatus": false,
176 "complete": "payload",
177 "targetType": "msg",
178 "x": 490,
179 "y": 60,
180 "wires": []
181 },
182 {
183 "id": "cb8ef1e2.a85f6",
184 "type": "ttn uplink",
185 "z": "f6f7a740.c6b338",
186 "name": "TTN Input",
187 "app": "58ceff1f.8576a",
188 "dev_id": "tum-gis-device2",

(continues on next page)

50 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

189 "field": "",
190 "x": 80,
191 "y": 60,
192 "wires": [
193 [
194 "aae507e3.771c18"
195]
196]
197 },
198 {
199 "id": "aae507e3.771c18",
200 "type": "cayennelpp-decoder",
201 "z": "f6f7a740.c6b338",
202 "name": "",
203 "x": 260,
204 "y": 60,
205 "wires": [
206 [
207 "ccb2fb81.aacd58",
208 "739d03d0.606a6c"
209]
210]
211 },
212 {
213 "id": "d7e35050.187eb",
214 "type": "function",
215 "z": "f6f7a740.c6b338",
216 "name": "Battery Voltage",
217 "func": "var Batteryvolt = msg.payload.valueOf();\nvar newMessage = {

→˓payload: { \"result\": Batteryvolt, \"Datastream\": {\"@iot.id\": 107}} };
→˓\nnewMessage.headers = {\"Content-type\" : \"application/json\"}\nreturn newMessage;
→˓",

218 "outputs": 1,
219 "noerr": 0,
220 "x": 460,
221 "y": 240,
222 "wires": [
223 [
224 "dd5d521b.5c984"
225]
226]
227 },
228 {
229 "id": "c5363ad1.5d3418",
230 "type": "function",
231 "z": "f6f7a740.c6b338",
232 "name": "Temperature2",
233 "func": "var tempValue = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": tempValue, \"Datastream\": {\"@iot.id\": 108}} };\nnewMessage.
→˓headers = {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

234 "outputs": 1,
235 "noerr": 0,
236 "x": 460,
237 "y": 280,
238 "wires": [
239 [
240 "dd5d521b.5c984"

(continues on next page)

2.3. Feather M0 LoRa in TFA Housing 51

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

241]
242]
243 },
244 {
245 "id": "ee2891fa.0dbbe",
246 "type": "function",
247 "z": "f6f7a740.c6b338",
248 "name": "Barometric Pressure",
249 "func": "var pressure = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": pressure, \"Datastream\": {\"@iot.id\": 109}} };\nnewMessage.headers
→˓= {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

250 "outputs": 1,
251 "noerr": 0,
252 "x": 480,
253 "y": 320,
254 "wires": [
255 [
256 "dd5d521b.5c984"
257]
258]
259 },
260 {
261 "id": "71354cb4.e6af04",
262 "type": "function",
263 "z": "f6f7a740.c6b338",
264 "name": "Pressure atm",
265 "func": "var atm = msg.payload.valueOf();\nvar newMessage = { payload: { \

→˓"result\": atm, \"Datastream\": {\"@iot.id\": 110}} };\nnewMessage.headers = {\
→˓"Content-type\" : \"application/json\"}\nreturn newMessage;",

266 "outputs": 1,
267 "noerr": 0,
268 "x": 450,
269 "y": 360,
270 "wires": [
271 [
272 "dd5d521b.5c984"
273]
274]
275 },
276 {
277 "id": "d48c0c97.4eb08",
278 "type": "function",
279 "z": "f6f7a740.c6b338",
280 "name": "Altitude",
281 "func": "var altitude = msg.payload.valueOf();\nvar newMessage = { payload:

→˓{ \"result\": altitude, \"Datastream\": {\"@iot.id\": 111}} };\nnewMessage.headers
→˓= {\"Content-type\" : \"application/json\"}\nreturn newMessage;",

282 "outputs": 1,
283 "noerr": 0,
284 "x": 440,
285 "y": 400,
286 "wires": [
287 [
288 "dd5d521b.5c984"
289]
290]
291 },

(continues on next page)

52 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

292 {
293 "id": "58ceff1f.8576a",
294 "type": "ttn app",
295 "z": "",
296 "appId": "gis-tum-sensors",
297 "accessKey": "ttn-account-ACCESSKEY_HERE",
298 "discovery": "discovery.thethingsnetwork.org:1900"
299 }
300]

2.3.6 References

• Arduino Sketch for Outdoor Weather Monitoring sensor node

• Node red flow for Outdoor Weather Monitoring sensor node

• Feather M0 LoRa Arduino IDE Setup

• Sample Arduino codes of using an Adafruit feather M0 LoRa

2.4 Adafruit 32u4 LoRa

This tutorial is made to showcase the use of Adafruit 32u4 board to create a LoRaWAN enabled sensor node. In the
following example, a temperature and humidity sensor was used with the Adafruit 32u4 board.

2.4.1 Hardware

To build this sensor node we have used following hardware components:

• Adafruit Feather 32u4 LoRa module

• Grove - DHT-22 Temperature & Humidity Sensor

• Breadboard

• Battery

• Resistor: 4.7k to 10k Ohm

Microcontroller

The Adafruit Feather 32u4 LoRa module is operated by the 8bit ATmega32u4 microcontroller running at 8MHz. It has
32 KB flash memory (to store the program code) and 2 KB of RAM (to store variables, status information, and buffers).
The operating voltage of the board is 3.3V (this is important when attaching sensors and other peripherals; they also
must operate on 3.3V). The board offers 20 general purpose digital input/output pins (20 GPIOs) with 10 analog input
pins (with 12bit analog digital converters (ADC)), one serial port (programmable Universal Asynchronous Receiver
and Transmitter, UART), one I2C port, one SPI port, one USB port. The board comes with an embedded Lithium
polymer battery management chip and status indicator led, which allows to directly connect a 3.7V LiPo rechargeable
battery that will be automatically recharged when the board is powered over its USB connector. The Adafruit Feather
32u4 LoRa board is available in German shops from around 37 C to 45 C.

The LoRa transmitter and receiver is encapsulated within an RFM95 module from the company HopeRF. This module
uses the LoRa chip SX1276 from the company Semtech and is dedicated to the 868 MHz frequency band. The RFM95

2.4. Adafruit 32u4 LoRa 53

https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module/setup
https://github.com/mikenz/Feather_M0_LoRa
https://www.adafruit.com/product/3078
http://wiki.seeedstudio.com/Grove-Temperature_and_Humidity_Sensor_Pro/
https://en.wikipedia.org/wiki/Breadboard#/media/File:400_points_breadboard.jpg
https://www.adafruit.com/product/353
https://learn.sparkfun.com/tutorials/resistors/all

TUM-GIS Sensor Nodes, Release v0.0.1

module is connected via SPI interface to the microcontroller. Most of the required connections of the LoRa transceiver
pins with the microcontroller are already built-in on the Adafruit Feather 32u4 LoRa board. However, Digital Pin 6 of
the microcontroller must be connected to DIO1 of the LoRa transceiver module in addition using a simple wire. Since
the module only implements the LoRa physical layer, the LoRaWAN protocol stack must be implemented in software
on the microcontroller. We are using the Arduino library LMIC for that purpose (see below). The implemented
LoRaWAN functionality is compatible with LoRaWAN Class A/C.

Fig. 12: Feather 32u4 with RFM95 LoRa Radio-868 MHz-RadioFruit from Adafruit. Feather 32u4 LoRa tutorial with
explanations, datasheets, and examples

Sensor

We have attached a DHT22 sensor to the microcontroller board, which measures air temperature and humidity. The
minimal time interval between two measurements is 2 seconds. All data transfers between the DHT22 and the mi-
crocontroller use a single digital line. The sensor data pin is attached to a GPIO pin (here: Digital Pin 5) of the
microcontroller. In addition, a so-called pull-up resistor of 4.7k to 10k Ohm must be connected between the data line
and VCC (+3.3V). The DHT22 datasheet provides more technical details about the DHT22 Sensor. A tutorial on how
to use the DHT22 sensor with Arduino microcontrollers is provided here. The sensor is available in German shops for
around 4 C to 10 C.

For more details on the wiring connections, follow this tutorial. Once all these connection are made, the board is
connected with a computer using a USB cable. Further, steps of software part needs to be followed. But, before that
we need to register a new device on the service that we are using.

2.4.2 Software

The sensor node has been programmed using the Arduino IDE. Please note, that in the Arduino framework a program
is called a ‘Sketch’.

After the sketch has successfully established a connection to The Things Network it reports the air temperature,
humidity, and the voltage of a (possibly) attached LiPo battery every 5 minutes. All three values are being encoded in

54 Chapter 2. Contents

https://www.adafruit.com/product/3078
https://learn.adafruit.com/adafruit-feather-32u4-radio-with-lora-radio-module/
https://learn.adafruit.com/adafruit-feather-32u4-radio-with-lora-radio-module/
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://learn.adafruit.com/dht?view=all
https://github.com/tum-gis/sensor-nodes/tree/master/FeatherM0LoRa%20in%20TFA%20Housing#dht-22-sensor-connections
https://www.arduino.cc/en/main/software

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 13: The Adafruit Feather 32u4 RFM95 LoRa with attached antenna (top), a 1000 mAh lithium polymer (LiPo)
battery (bottom), and an attached DHT22 temperature / humidity sensor (white box on the left)

two byte integer values each (in most significant byte order) and then sent as a 6 bytes data packet to the respective
TTN application using LoRaWAN port 7. Please note, that LoRaWAN messages can be addressed to ports 1-255 (port
0 is reserved); these ports are similar to port numbers 0-65535 when using the Internet TCP/IP protocol. Voltage and
humidity values are always greater or equal to 0, but the temperature value can also become negative. Negative values
are represented as a two’s complement; this must be considered in the Payload Decoding Function used in The Things
Network (see here).

In between two sensor readings the microcontroller is going into deep sleep mode to save battery power. With a
1000 mAh LiPo battery and the current version of the sketch the system can run for at least 5 months. (Further
optimizations would be possible, for example, not switching on the LED on the microcontroller board during LoRa
data transmissions.)

The employed RFM95 LoRa module does not provide built-in support of the LoRaWAN protocol. Thus, it has to
be implemented on the ATmega32u4 microcontroller. We use the IBM LMIC (LoraMAC-in-C) library for Arduino.
Since the ATmega32u4 microcontroller only has 32 KB of flash memory and the LMIC library is taking most of it,
there is only very limited code space left for the application dealing with the sensors (about 2 KB). Nevertheless, this
is sufficient to query some sensors like in our example the DHT22.

Now download and run the Arduino Sketch for Adafruit32u4 LoRa sensor node file in the Arduino IDE. This code
was created by merging the example code of both the sensors and the ttn-otaa example from the lmic library. Some
required changes were made while merging the example codes. The user should change the network session key, app
session key and device address in the code before compiling. These keys can be obtained from the TTN account as
shown in the services section.

Listing 14: Modify the keys in highlighted lines.

1 // LoRaWAN NwkSKey, network session key
2 // This should be in big-endian (aka msb).
3 static const PROGMEM u1_t NWKSKEY[16] = {NETWORK_SESSION_KEY_HERE_IN_MSB_FORMAT};
4

(continues on next page)

2.4. Adafruit 32u4 LoRa 55

https://en.wikipedia.org/wiki/Two%27s_complement
https://github.com/matthijskooijman/arduino-lmic

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

5 // LoRaWAN AppSKey, application session key
6 // This should also be in big-endian (aka msb).
7 static const u1_t PROGMEM APPSKEY[16] = {APPLICATION_SESSION_KEY_HERE_IN_MSB_FORMAT};
8

9 // LoRaWAN end-device address (DevAddr)
10 // See http://thethingsnetwork.org/wiki/AddressSpace
11 // The library converts the address to network byte order as needed, so this should

→˓be in big-endian (aka msb) too.
12 static const u4_t DEVADDR = 0x260XXXXX ; // <-- Change this address for every node!

Following is the example code that can be used to measure the battery voltage of the sensor node:

Listing 15: Code for measuring the battery voltage

1 measuredvbat = analogRead(VBATPIN);
2 measuredvbat *= 2; // we divided by 2, so multiply back
3 measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage
4 measuredvbat /= 1023; // convert to voltage
5 int16_vbat = round(measuredvbat * 100);
6 mydata[4] = (byte) (int16_vbat >> 8);
7 mydata[5] = (byte) (int16_vbat & 0x00FF);
8 SERIALDEBUG_PRINT(" \t");
9 SERIALDEBUG_PRINT("Battery Voltage: ");

10 SERIALDEBUG_PRINT(measuredvbat);
11 SERIALDEBUG_PRINTLN(" V");

2.4.3 Services

The services used for this sensor-node are:

• TheThingsNetwork service for LoRaWAN network service.

• TheThingsNetwork - OGC SensorWeb integration for uploading LoRaWAN sensor data into OGC infrastructure.

Registration of the sensor node with The Things Network (TTN)

The LoRaWAN protocol makes use of a number of different identifiers, addresses, keys, etc. These are required to
unambiguously identify devices, applications, as well as to encrypt and decrypt messages. The names and meanings
are nicely explained on a dedicated TTN web page.

The sketch given above connects the sensor node with The Things Network (TTN) using the Activation-by-
Personalisation (ABP) mode. In this mode, the required keys for data encryption and session management are created
manually using the TTN console window and must be pasted into the source code of the sketch below. In order to get
this running, you will need to create a new device in the TTN console window. This assumes that you already have a
TTN user account (which needs to be created otherwise). In the settings menu of the newly created device the ABP
mode must be selected and the settings must be saved. Then copy the DevAddr, the NwkSKey, and the AppSKey
from the TTN console web page of the newly registered device and paste them into the proper places in the sketch
above. Please make sure that you choose for each of the three keys the correct byte ordering (MSB for all three keys).
A detailed explanation of these steps is given here. Then the sketch can be compiled and uploaded to the Adafruit
Feather 32u4 LoRa microcontroller.

Important hint: everytime the sensor node is reset or being started again, make sure to reset the frame counter of
the registered sensor in the TTN console web page of the registered device. The reason is that in LoRaWAN all
transmitted data packets have a frame counter, which is incremented after each data frame being sent. This way a
LoRaWAN application can avoid receiving and using the same packet again (replay attack). When TTN receives a

56 Chapter 2. Contents

https://www.thethingsnetwork.org/docs/lorawan/addressing.html
https://www.thethingsnetwork.org/docs/devices/registration.html
https://learn.adafruit.com/the-things-network-for-feather?view=all

TUM-GIS Sensor Nodes, Release v0.0.1

data packet, it checks if the frame number is higher than the last one received before. If not, the received packet is
considered to be old or a replay attack and is discarded. When the sensor node is reset or being started again, its
frame counter is also reset to 0, hence, the TTN application assumes that all new packages are old, because their frame
counter is lower than the last frame received (before the reset). A manual frame counter reset is only necessary when
registering the node using ABP mode. In OTAA mode the frame counter is automatically reset in the sensor node and
the TTN network server.

TTN Payload Decoding

Everytime a data packet is received by a TTN application a dedicated Javascript function is being called (Payload
Decoder Function). This function can be used to decode the received byte string and to create proper Javascript
objects or values that can directly be read by humans when looking at the incoming data packet. This is also useful to
format the data in a specific way that can then be forwarded to an external application (e.g. a sensor data platform like
MyDevices or Thingspeak). Such a forwarding can be configured in the TTN console in the “Integrations” tab. TTN
payload decoder for Adafruit32u4 LoRa sensor node given here checks if a packet was received on LoRaWAN port
7 and then assumes that it consists of the 6 bytes encoded as described above. It creates the three Javascript objects
‘temperature’, ‘humidity’, and ‘vbattery’. Each object has two fields: ‘value’ holds the value and ‘uom’ gives the unit
of measure. The source code can simply be copied and pasted into the ‘decoder’ tab in the TTN console after having
selected the application. Choose the option ‘Custom’ in the ‘Payload Format’ field. Note that when you also want to
handle other sensor nodes sending packets on different LoRaWAN ports, then the Payload Decoder Function can be
extended after the end of the if (port==7) {. . . } statement by adding else if (port==8) {. . . } else if (port==9) {. . . } etc.

The Things Network - OGC SensorWeb Integration

The presented Payload Decoder Function works also with the TTN-OGC SWE Integration for the 52° North Sensor
Observation Service (SOS). This software component can be downloaded from this repository. It connects a TTN
application with a running transactional Sensor Observation Service 2.0.0 (SOS). Data packets received from TTN are
imported into the SOS. The SOS persistently stores sensor data from an arbitrary number of sensor nodes and can be
queried for the most recent as well as for historic sensor data readings. The 52° North SOS comes with its own REST
API and a nice web client allowing to browse the stored sensor data in a convenient way.

We are running an instance of the 52° North SOS and the TTN-OGC SWE Integration. The web client for this
LoRaWAN sensor node can be accessed on this page. Here is a screenshot showing the webclient:

Sending a message to the Sensor Node (Downlink)

Using the TTN console we can send a message (i.e. a byte string) to the sensor node. In the TTN console application
page click on the respective application. Then click on the ‘Devices’ tab and choose the proper sensor node (here:
adafruit-feather-32u4-lora3). On the overview page scroll down to the ‘Downlink’ section. In the ‘Payload’ field enter
1 to 4 bytes. In order to show digits or letters on the LED display these must be ASCII encoded and have to be entered
as hexadecimal numbers. When you click on the ‘Send’ button the message will be queued and the next time when
the node sends its data packet (uplink) it will receive the message. The first 4 bytes will be shown on the display
and the beeper indicates the reception of a new downlink message. In order to blank the display just send a one byte
message with the value ‘20’ (hexadecimal for 32, which is the ASCII code for a space). When the node receives just a
single blank character it will not produce a beeping sound. There is a nice web page offering online encoding of text
to ASCII numbers in hexadecimal encoding. For example, in order to display the text ‘LoRa’, the four hexadecimal
numbers 4C 6F 52 61 have to be entered in the Payload entry field.

2.4.4 Code files

2.4. Adafruit 32u4 LoRa 57

https://mydevices.com/
https://thingspeak.com/
https://github.com/52North/ttn-ogcswe-integration
https://github.com/52North/SOS
https://github.com/52North/SOS
https://github.com/52North/ttn-ogcswe-integration
https://www.opengeospatial.org/standards/sos
http://129.187.38.201:8080/ttn-sos-integration/static/client/helgoland/index.html#/diagram?ts=ttnOGC__7,ttnOGC__8,ttnOGC__6
https://console.thethingsnetwork.org/applications
https://console.thethingsnetwork.org/applications
https://en.wikipedia.org/wiki/ASCII
https://www.rapidtables.com/convert/number/ascii-hex-bin-dec-converter.html

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 14: Web client for data visualization

Listing 16: Arduino Sketch for Adafruit32u4 LoRa sensor node

1 /***
2 * Arduino Sketch for a LoRaWAN sensor node that is registered with
3 * 'The Things Network' (TTN) www.thethingsnetwork.org
4 *
5 * Author: Thomas H. Kolbe, thomas.kolbe@tum.de
6 * Version: 1.0
7 * Last update: 2018-05-21
8 *
9 * The sensor node is based on the Adafruit Feather 32u4 LoRa microcontroller

10 * board https://learn.adafruit.com/adafruit-feather-32u4-radio-with-lora-radio-
→˓module/

11 * The sensor node uses a DHT22 sensor measuring air temperature and humidity.
12 * Also the voltage of an attached LiPo battery is monitored and sent as
13 * an observation. All three values are encoded as 2 byte integer values each.
14 * Hence, the total message payload is 6 bytes. Before the values are converted
15 * to integers they are multiplied by 100 to preserve 2 digits after the decimal
16 * point. Thus, the received values must be divided by 100 to obtain the measured
17 * values. The payload is sent every 300s to LoRaWAN port 7. The following
18 * Javascript function can be used as a payload decoding function in TTN:
19 *
20 * function Decoder(bytes, port) {
21 * // Decode an uplink message from a buffer
22 * // (array) of bytes to an object of fields.
23 * if (port==7) {
24 * var decoded = {
25 * "temperature": (bytes[0] << 8 | bytes[1]) / 100.0,

(continues on next page)

58 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

26 * "humidity": (bytes[2] << 8 | bytes[3]) / 100.0,
27 * "vbattery": (bytes[4] << 8 | bytes[5]) / 100.0
28 * };
29 * } else {
30 * var decoded = null;
31 * }
32 * return decoded;
33 * }
34 *
35 * In between two data transmissions the microcontroller board can go
36 * into sleep mode to reduce energy consumption for extended operation
37 * time when running on battery. Usage of the sleep mode must be
38 * explicitly configured below.
39 *
40 * Important hint: everytime the sensor node is reset or being started again,
41 * make sure to reset the frame counter of the registered sensor in the
42 * TTN console at https://console.thethingsnetwork.org. The reason is that
43 * in LoRaWAN all packets that are transmitted have a frame counter, which
44 * is incremented after each data frame being sent. This way a LoRaWAN application
45 * can avoid receiving and using the same packet again (replay attack). When
46 * TTN receives a data packet, it checks if the frame number is higher than
47 * the last one received before. If not, the received packet is considered
48 * to be old or a replay attack and is discarded. When the sensor node is
49 * reset or being started again, its frame counter is also reset to 0, hence,
50 * the TTN application assumes that all new packages are old, because their
51 * frame counter is lower than the last frame received (before the reset).
52 *
53 * Note, that the DHT22 data pin must be connected to Digital Pin 5 of the
54 * microcontroller board. A resistor of 4.7k - 10k Ohm must be connected to
55 * the data pin and VCC (+3.3V). Digital Pin 6 must be connected to IO1 of the
56 * LoRa transceiver module using a simple wire.
57 *
58 * The code is based on the Open Source library LMIC implementing the LoRaWAN
59 * protocol stack on top of a given LoRa transceiver module (here: RFM95 from
60 * HopeRF, which uses the Semtech SX1276 LoRa chip). The library is originally
61 * being developed by IBM and has been ported to the Arduino platform. See
62 * notes below from the original developers.
63 *
64 ***
65 * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
66 *
67 * Permission is hereby granted, free of charge, to anyone
68 * obtaining a copy of this document and accompanying files,
69 * to do whatever they want with them without any restriction,
70 * including, but not limited to, copying, modification and redistribution.
71 * NO WARRANTY OF ANY KIND IS PROVIDED.
72 *
73 * This uses ABP (Activation-by-personalisation), where a DevAddr and
74 * Session keys are preconfigured (unlike OTAA, where a DevEUI and
75 * application key is configured, while the DevAddr and session keys are
76 * assigned/generated in the over-the-air-activation procedure).
77 *
78 * Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
79 * g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
80 * violated by this sketch when left running for longer)!
81 *
82 * To use this sketch, first register your application and device with

(continues on next page)

2.4. Adafruit 32u4 LoRa 59

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

83 * the things network, to set or generate a DevAddr, NwkSKey and
84 * AppSKey. Each device should have their own unique values for these
85 * fields.
86 *
87 * Do not forget to define the radio type correctly in config.h.
88 *
89 ***/
90

91 // If the following line is uncommented, messages are being printed out to the
92 // serial connection for debugging purposes. When using the Arduino Integrated
93 // Development Environment (Arduino IDE), these messages are displayed in the
94 // Serial Monitor selecting the proper port and a baudrate of 115200.
95

96 //#define SERIALDEBUG
97

98 #ifdef SERIALDEBUG
99 #define SERIALDEBUG_PRINT(...) Serial.print(__VA_ARGS__)

100 #define SERIALDEBUG_PRINTLN(...) Serial.println(__VA_ARGS__)
101 #else
102 #define SERIALDEBUG_PRINT(...)
103 #define SERIALDEBUG_PRINTLN(...)
104 #endif
105

106 // If the following line is uncommented, the sensor node goes into sleep mode
107 // in between two data transmissions. Also the 2secs time between the
108 // initialization of the DHT22 sensor and the reading of the observations
109 // is spent in sleep mode.
110 // Note, that on the Adafruit Feather 32u4 LoRa board the Serial connection
111 // gets lost as soon as the board goes into sleep mode, and it will not be
112 // established again. Thus, the definition of SERIALDEBUG should be commented
113 // out above when using sleep mode.
114

115 #define SLEEPMODE
116

117 #ifdef SLEEPMODE
118 #include <Adafruit_SleepyDog.h>
119 #endif
120

121 #include <lmic.h>
122 #include <hal/hal.h>
123 #include <SPI.h>
124

125 #include <DHT.h>
126

127 #define DHTPIN 5 // Arduino Digital Pin which is connected to the
→˓DHT sensor.

128 #define DHTTYPE DHT22 // DHT 22 (AM2302)
129

130 DHT dht(DHTPIN, DHTTYPE); // create the sensor object
131

132 #define VBATPIN A9 // battery voltage is measured from Analog Input A9
133

134 // The following three constants (NwkSKey, AppSKey, DevAddr) must be changed
135 // for every new sensor node. We are using the LoRaWAN ABP mode (activation by
136 // personalisation) which means that each sensor node must be manually registered
137 // in the TTN console at https://console.thethingsnetwork.org before it can be
138 // started. In the TTN console create a new device and choose ABP mode in the

(continues on next page)

60 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

139 // settings of the newly created device. Then, let TTN generate the NwkSKey and
140 // and the AppSKey and copy them (together with the device address) from the webpage
141 // and paste them below.
142

143 // LoRaWAN NwkSKey, network session key
144 // This should be in big-endian (aka msb).
145 static const PROGMEM u1_t NWKSKEY[16] = {NETWORK_SESSION_KEY_HERE_IN_MSB_FORMAT};
146

147 // LoRaWAN AppSKey, application session key
148 // This should also be in big-endian (aka msb).
149 static const u1_t PROGMEM APPSKEY[16] = {APPLICATION_SESSION_KEY_HERE_IN_MSB_FORMAT};
150

151 // LoRaWAN end-device address (DevAddr)
152 // See http://thethingsnetwork.org/wiki/AddressSpace
153 // The library converts the address to network byte order as needed, so this should

→˓be in big-endian (aka msb) too.
154 static const u4_t DEVADDR = 0x260XXXXX ; // <-- Change this address for every node!
155

156 // These callbacks are only used in over-the-air activation, so they are
157 // left empty here (we cannot leave them out completely unless
158 // DISABLE_JOIN is set in config.h, otherwise the linker will complain).
159 void os_getArtEui (u1_t* buf) { }
160 void os_getDevEui (u1_t* buf) { }
161 void os_getDevKey (u1_t* buf) { }
162

163 // The following array of bytes is a placeholder to contain the message payload
164 // which is transmitted to the LoRaWAN gateway. We are currently only using 6 bytes.
165 // Please make sure to extend the size of the array, if more sensors should be
166 // attached to the sensor node and the message payload becomes larger than 10 bytes.
167 static uint8_t mydata[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0xA};
168

169 static osjob_t sendjob;
170

171 // Schedule transmission every TX_INTERVAL seconds (might become longer due to duty
172 // cycle limitations). The total interval time is 2secs for the measurement
173 // plus 3secs for the LoRaWAN packet transmission plus TX_INTERVAL_AFTER_SLEEP seconds
174 // plus SLEEP_TIME seconds (microcontroller in sleep mode)
175 const unsigned TX_INTERVAL = 300; // overall cycle time (send one set of

→˓observations every 5mins)
176 const unsigned TX_WAIT_AFTER_SLEEP = 1; // seconds to wait after return from sleep

→˓mode before the next transmit is scheduled
177 const unsigned TX_TIME = 3; // rough estimate of transmission time of a

→˓single packet
178 const unsigned MEASURE_TIME = 2; // seconds measuring time
179 const unsigned SLEEP_TIME = TX_INTERVAL - TX_WAIT_AFTER_SLEEP - TX_TIME - MEASURE_

→˓TIME;
180 const unsigned WAIT_TIME = TX_INTERVAL - TX_TIME - MEASURE_TIME;
181

182 // Pin mapping
183 const lmic_pinmap lmic_pins = {
184 .nss = 8,
185 .rxtx = LMIC_UNUSED_PIN,
186 .rst = 4,
187 .dio = {7, 6, LMIC_UNUSED_PIN},
188 };
189

190 void onEvent (ev_t ev) {
(continues on next page)

2.4. Adafruit 32u4 LoRa 61

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

191 SERIALDEBUG_PRINT(os_getTime());
192 SERIALDEBUG_PRINT(": ");
193 switch(ev) {
194 case EV_SCAN_TIMEOUT:
195 SERIALDEBUG_PRINTLN(F("EV_SCAN_TIMEOUT"));
196 break;
197 case EV_BEACON_FOUND:
198 SERIALDEBUG_PRINTLN(F("EV_BEACON_FOUND"));
199 break;
200 case EV_BEACON_MISSED:
201 SERIALDEBUG_PRINTLN(F("EV_BEACON_MISSED"));
202 break;
203 case EV_BEACON_TRACKED:
204 SERIALDEBUG_PRINTLN(F("EV_BEACON_TRACKED"));
205 break;
206 case EV_JOINING:
207 SERIALDEBUG_PRINTLN(F("EV_JOINING"));
208 break;
209 case EV_JOINED:
210 SERIALDEBUG_PRINTLN(F("EV_JOINED"));
211 break;
212 case EV_RFU1:
213 SERIALDEBUG_PRINTLN(F("EV_RFU1"));
214 break;
215 case EV_JOIN_FAILED:
216 SERIALDEBUG_PRINTLN(F("EV_JOIN_FAILED"));
217 break;
218 case EV_REJOIN_FAILED:
219 SERIALDEBUG_PRINTLN(F("EV_REJOIN_FAILED"));
220 break;
221 case EV_TXCOMPLETE:
222 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the

→˓voltage LOW
223 SERIALDEBUG_PRINTLN(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
224 if (LMIC.txrxFlags & TXRX_ACK)
225 SERIALDEBUG_PRINTLN(F("Received ack"));
226 if (LMIC.dataLen) {
227 #ifdef SERIALDEBUG
228 SERIALDEBUG_PRINT(F("Received "));
229 SERIALDEBUG_PRINT(LMIC.dataLen);
230 SERIALDEBUG_PRINT(F(" bytes of payload: 0x"));
231 for (int i=0; i<LMIC.dataLen; i++) {
232 if (LMIC.frame[LMIC.dataBeg + i] < 0x10) {
233 SERIALDEBUG_PRINT(F("0"));
234 }
235 SERIALDEBUG_PRINT(LMIC.frame[LMIC.dataBeg + i], HEX);
236 }
237 SERIALDEBUG_PRINTLN();
238 #endif
239 // add your code to handle a received downlink data packet here
240 }
241

242 #ifdef SLEEPMODE
243 // Schedule next transmission in 1 second after the board returns from

→˓sleep mode
244 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_WAIT_AFTER_

→˓SLEEP), do_send);
(continues on next page)

62 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

245

246 SERIALDEBUG_PRINTLN("going to sleep now ... ");
247 // lmic library sleeps automatically after transmission has been completed
248 for(int i= 0; i < SLEEP_TIME / 8; i++) {
249 Watchdog.sleep(8000); // maximum seems to be 8 seconds
250 SERIALDEBUG_PRINT('.');
251 }
252 if (SLEEP_TIME % 8) {
253 Watchdog.sleep((SLEEP_TIME % 8)*1000);
254 SERIALDEBUG_PRINT('*');
255 }
256 SERIALDEBUG_PRINTLN("... woke up again");
257 #else
258 // Schedule next transmission
259 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(WAIT_TIME), do_

→˓send);
260 #endif
261 break;
262 case EV_LOST_TSYNC:
263 SERIALDEBUG_PRINTLN(F("EV_LOST_TSYNC"));
264 break;
265 case EV_RESET:
266 SERIALDEBUG_PRINTLN(F("EV_RESET"));
267 break;
268 case EV_RXCOMPLETE:
269 // data received in ping slot
270 SERIALDEBUG_PRINTLN(F("EV_RXCOMPLETE"));
271 break;
272 case EV_LINK_DEAD:
273 SERIALDEBUG_PRINTLN(F("EV_LINK_DEAD"));
274 break;
275 case EV_LINK_ALIVE:
276 SERIALDEBUG_PRINTLN(F("EV_LINK_ALIVE"));
277 break;
278 default:
279 SERIALDEBUG_PRINTLN(F("Unknown event"));
280 break;
281 }
282 }
283

284 void do_send(osjob_t* j){
285 // Check if there is not a current TX/RX job running
286 if (LMIC.opmode & OP_TXRXPEND) {
287 SERIALDEBUG_PRINTLN(F("OP_TXRXPEND, not sending"));
288 } else {
289 // Prepare upstream data transmission at the next possible time.
290

291 float temperature, humidity, measuredvbat;
292 int16_t int16_temperature, int16_humidity, int16_vbat;
293

294 // Start a measurement to update the sensor's internal temperature & humidity
→˓reading.

295 // Note, that when fetching measurements from a DHT22 sensor, the reported
296 // values belong to the measurement BEFORE the current measurement.
297 // Therefore, in order to get current observations, we first perform a new

→˓measurement
298 // and wait 2 secs (which is the minimum time between two sensor observations

→˓for (continues on next page)

2.4. Adafruit 32u4 LoRa 63

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

299 // the DHT22) and then directly retrieve the observations again.
300 temperature = dht.readTemperature();
301 #ifdef SLEEPMODE
302 Watchdog.sleep(2000);
303 #else
304 delay(2000);
305 #endif
306 // Now read the recently measured temperature (2 secs ago) as Celsius (the

→˓default)
307 temperature = dht.readTemperature();
308 // Read the recently measured humidity (2 secs ago)
309 humidity = dht.readHumidity();
310

311 // Check if any reads failed and exit early (to try again).
312 if (isnan(humidity) || isnan(temperature)) {
313 SERIALDEBUG_PRINTLN("Failed to read from DHT sensor!");
314 // blink the LED five times to indicate that the sensor values could not

→˓be read
315 for (int i=0; i<5; i++) {
316 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on by making the

→˓voltage HIGH
317 delay(150);
318 digitalWrite(LED_BUILTIN, LOW); // turn the LED on by making the

→˓voltage HIGH
319 delay(150);
320 }
321 // ok, then wait for another period and try it again
322 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_

→˓send);
323 } else {
324 SERIALDEBUG_PRINT("Humidity: ");
325 SERIALDEBUG_PRINT(humidity);
326 SERIALDEBUG_PRINT(" %\t");
327 SERIALDEBUG_PRINT("Temperature: ");
328 SERIALDEBUG_PRINT(temperature);
329 SERIALDEBUG_PRINT(" °C ");
330

331 int16_temperature = 100*temperature;
332 int16_humidity = 100*humidity;
333 mydata[0] = (byte) (int16_temperature >> 8);
334 mydata[1] = (byte) (int16_temperature & 0x00FF);
335 mydata[2] = (byte) (int16_humidity >> 8);
336 mydata[3] = (byte) (int16_humidity & 0x00FF);
337

338 measuredvbat = analogRead(VBATPIN);
339 measuredvbat *= 2; // we divided by 2, so multiply back
340 measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage
341 measuredvbat /= 1023; // convert to voltage
342 int16_vbat = round(measuredvbat * 100);
343 mydata[4] = (byte) (int16_vbat >> 8);
344 mydata[5] = (byte) (int16_vbat & 0x00FF);
345 SERIALDEBUG_PRINT(" \t");
346 SERIALDEBUG_PRINT("Battery Voltage: ");
347 SERIALDEBUG_PRINT(measuredvbat);
348 SERIALDEBUG_PRINTLN(" V");
349

350 // Send the 6 bytes payload to LoRaWAN port 7 and do not request an
→˓acknowledgement. (continues on next page)

64 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

351 // The following call does not directly sends the data, but puts a "send
→˓job"

352 // in the job queue. This job eventually is performed in the call "os_
→˓runloop_once();"

353 // issued repeatedly in the "loop()" method below. After the transmission
→˓is

354 // complete, the EV_TXCOMPLETE event is signaled, which is handled in the
355 // event handler method "onEvent (ev_t ev)" above. In the EV_TXCOMPLETE

→˓branch
356 // then a new call to the "do_send(osjob_t* j)" method is being prepared

→˓for
357 // delayed execution with a waiting time of TX_INTERVAL seconds.
358 LMIC_setTxData2(7, mydata, 6, 0);
359 SERIALDEBUG_PRINTLN(F("Packet queued"));
360 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on by making the

→˓voltage HIGH
361

362 // Next TX is scheduled after TX_COMPLETE event.
363 }
364 }
365 }
366

367 void setup() {
368 delay(5000); // give enough time to open serial monitor (if

→˓needed)
369

370 pinMode(LED_BUILTIN, OUTPUT);
371 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
372

373 #ifdef SERIALDEBUG
374 Serial.begin(115200);
375 // while (!Serial);
376 #endif
377

378 dht.begin(); // initialize DHT22 sensor
379

380 SERIALDEBUG_PRINTLN(F("Starting"));
381

382 #ifdef VCC_ENABLE
383 // For Pinoccio Scout boards
384 pinMode(VCC_ENABLE, OUTPUT);
385 digitalWrite(VCC_ENABLE, HIGH);
386 delay(1000);
387 #endif
388

389 // LMIC init
390 os_init();
391 // Reset the MAC state. Session and pending data transfers will be discarded.
392 LMIC_reset();
393 LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
394

395 // Set static session parameters. Instead of dynamically establishing a session
396 // by joining the network, precomputed session parameters are be provided.
397 #ifdef PROGMEM
398 // On AVR, these values are stored in flash and only copied to RAM
399 // once. Copy them to a temporary buffer here, LMIC_setSession will
400 // copy them into a buffer of its own again.

(continues on next page)

2.4. Adafruit 32u4 LoRa 65

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

401 uint8_t appskey[sizeof(APPSKEY)];
402 uint8_t nwkskey[sizeof(NWKSKEY)];
403 memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
404 memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
405 LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
406 #else
407 // If not running an AVR with PROGMEM, just use the arrays directly
408 LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
409 #endif
410

411 #if defined(CFG_eu868)
412 // Set up the channels used by the Things Network, which corresponds
413 // to the defaults of most gateways. Without this, only three base
414 // channels from the LoRaWAN specification are used, which certainly
415 // works, so it is good for debugging, but can overload those
416 // frequencies, so be sure to configure the full frequency range of
417 // your network here (unless your network autoconfigures them).
418 // Setting up channels should happen after LMIC_setSession, as that
419 // configures the minimal channel set.
420 // NA-US channels 0-71 are configured automatically
421 LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
422 LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);

→˓// g-band
423 LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
424 LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
425 LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
426 LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
427 LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
428 LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
429 LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI);

→˓// g2-band
430 // TTN defines an additional channel at 869.525Mhz using SF9 for class B
431 // devices' ping slots. LMIC does not have an easy way to define set this
432 // frequency and support for class B is spotty and untested, so this
433 // frequency is not configured here.
434 #elif defined(CFG_us915)
435 // NA-US channels 0-71 are configured automatically
436 // but only one group of 8 should (a subband) should be active
437 // TTN recommends the second sub band, 1 in a zero based count.
438 // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.

→˓json
439 LMIC_selectSubBand(1);
440 #endif
441

442 // Disable link check validation
443 LMIC_setLinkCheckMode(0);
444

445 // TTN uses SF9 for its RX2 window.
446 LMIC.dn2Dr = DR_SF9;
447

(continues on next page)

66 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

448 // Set data rate and transmit power for uplink (note: txpow seems to be ignored
→˓by the library)

449 LMIC_setDrTxpow(DR_SF7,14);
450

451 // Start job. This will initiate the repetitive sending of data packets,
452 // because after each data transmission, a delayed call to "do_send()"
453 // is being scheduled again.
454 do_send(&sendjob);
455 }
456

457 void loop() {
458 os_runloop_once();
459 }

Listing 17: TTN payload decoder for Adafruit32u4 LoRa sensor node

1 function Decoder (bytes, port) {
2 var result = {};
3 var transformers = {};
4

5 if (port==7) {
6 transformers = {
7 'temperature': function transform (bytes) {
8 value=bytes[0]*256 + bytes[1];
9 if (value>=32768) value=value-65536;

10 return value/100.0;
11 },
12 'humidity': function transform (bytes) {
13 return (bytes[0]*256 + bytes[1])/100.0;
14 },
15 'vbattery': function transform (bytes) {
16 return (bytes[0]*256 + bytes[1])/100.0;
17 },
18 }
19

20 result['temperature'] = {
21 value: transformers['temperature'](bytes.slice(0, 2)),
22 uom: 'Celsius',
23 }
24

25 result['humidity'] = {
26 value: transformers['humidity'](bytes.slice(2, 4)),
27 uom: 'Percent',
28 }
29

30 result['vbattery'] = {
31 value: transformers['vbattery'](bytes.slice(4, 6)),
32 uom: 'Volt',
33 }
34 }
35

36 return result;
37 }

2.4. Adafruit 32u4 LoRa 67

TUM-GIS Sensor Nodes, Release v0.0.1

2.4.5 References

• Adafruit Feather 32u4 LoRa microntroller

• Adafruit Feather 32u4 LoRa tutorial

• IBM LMIC (LoraMAC-in-C) library for Arduino

• Using Adafruit Feather 32u4 RFM95 as an TTN Node - Stories - Labs

• TTN LoraWan Atmega32U4 based node – ABP version | Primal Cortex’s Weblog

• node-workshop/lora32u4.md at master · kersing/node-workshop · GitHub

• Got Adafruit Feather 32u4 LoRa Radio to work and here is how - End Devices (Nodes) - The Things Network

• Adafruit Feather as LoRaWAN node | Wolfgang Klenk

• LMiC on Adafruit Lora Feather successfully sends message to TTN and then halts with “Packet queued” - End
Devices (Nodes) - The Things Network

• GitHub - marcuscbehrens/loralife

• GPS-Tracker - Stories - Labs

On battery saving / using the deep sleep mode

• Adafruit Feather 32u4 LoRa - long transmission time after deep sleep - End Devices (Nodes) - The Things
Network and this

• Full Arduino Mini LoraWAN and 1.3uA Sleep Mode - End Devices (Nodes) - The Things Network

• Adding Method to Adjust hal_ticks Upon Waking Up from Sleep · Issue #109 · matthijskooijman/arduino-lmic

• minilora-test/minilora-test.ino at cbe686826bd84fac8381de47b5f5b02dd47c2ca0 · tkerby/minilora-test

• Arduino-LMIC library with low power mode - Mario Zwiers

2.5 Adafruit 32u4 LoRa with Display

This tutorial is made to showcase the use of Adafruit 32u4 board to create a LoRaWAN enabled sensor node with a
display and a case. In the following example, a temperature and humidity sensor was used with the Adafruit 32u4
board to create this tutorial.

2.5.1 Hardware

To build this sensor node we have used following hardware components:

• Adafruit Feather 32u4 LoRa module

• Grove - DHT-22 Temperature & Humidity Sensor

• LED Display

• Breadboard

• Battery

• Resistor: 4.7k to 10k Ohm

• 3d-Printed case

68 Chapter 2. Contents

https://www.adafruit.com/product/3078
https://learn.adafruit.com/adafruit-feather-32u4-radio-with-lora-radio-module/
https://github.com/matthijskooijman/arduino-lmic
https://www.thethingsnetwork.org/labs/story/using-adafruit-feather-32u4-rfm95-as-an-ttn-node
https://primalcortex.wordpress.com/2017/10/31/ttnlorawan32u4node/
https://github.com/kersing/node-workshop/blob/master/lora32u4.md
https://www.thethingsnetwork.org/forum/t/got-adafruit-feather-32u4-lora-radio-to-work-and-here-is-how/6863/35
https://wolfgangklenk.wordpress.com/2017/04/15/adafruit-feather-as-lorawan-node/
https://www.thethingsnetwork.org/forum/t/lmic-on-adafruit-lora-feather-successfully-sends-message-to-ttn-and-then-halts-with-packet-queued/3762/25
https://www.thethingsnetwork.org/forum/t/lmic-on-adafruit-lora-feather-successfully-sends-message-to-ttn-and-then-halts-with-packet-queued/3762/25
https://github.com/marcuscbehrens/loralife
https://www.thethingsnetwork.org/labs/story/gps-tracker
https://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/7
https://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/7
https://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/13
https://www.thethingsnetwork.org/forum/t/full-arduino-mini-lorawan-below-1ua-sleep-mode/8059/97
https://github.com/matthijskooijman/arduino-lmic/issues/109
https://github.com/tkerby/minilora-test/blob/cbe686826bd84fac8381de47b5f5b02dd47c2ca0/minilora-test/minilora-test.ino#L190
https://mariozwiers.de/2018/04/04/arduino-lmic-library-with-low-power-mode/
https://www.adafruit.com/product/3078
http://wiki.seeedstudio.com/Grove-Temperature_and_Humidity_Sensor_Pro/
https://learn.adafruit.com/14-segment-alpha-numeric-led-featherwing
https://en.wikipedia.org/wiki/Breadboard#/media/File:400_points_breadboard.jpg
https://www.adafruit.com/product/2011
https://learn.sparkfun.com/tutorials/resistors/all
https://www.thingiverse.com/thing:2209964

TUM-GIS Sensor Nodes, Release v0.0.1

Microcontroller

The Adafruit Feather 32u4 LoRa module is operated by the 8bit ATmega32u4 microcontroller running at 8MHz. It has
32 KB flash memory (to store the program code) and 2 KB of RAM (to store variables, status information, and buffers).
The operating voltage of the board is 3.3V (this is important when attaching sensors and other peripherals; they also
must operate on 3.3V). The board offers 20 general purpose digital input/output pins (20 GPIOs) with 10 analog input
pins (with 12bit analog digital converters (ADC)), one serial port (programmable Universal Asynchronous Receiver
and Transmitter, UART), one I2C port, one SPI port, one USB port. The board comes with an embedded Lithium
polymer battery management chip and status indicator led, which allows to directly connect a 3.7V LiPo rechargeable
battery that will be automatically recharged when the board is powered over its USB connector. The Adafruit Feather
32u4 LoRa board is available in German shops from around 37 C to 45 C.

The LoRa transmitter and receiver is encapsulated within an RFM95 module from the company HopeRF. This module
uses the LoRa chip SX1276 from the company Semtech and is dedicated to the 868 MHz frequency band. The RFM95
module is connected via SPI interface to the microcontroller. Most of the required connections of the LoRa transceiver
pins with the microcontroller are already built-in on the Adafruit Feather 32u4 LoRa board. However, Digital Pin 6 of
the microcontroller must be connected to DIO1 of the LoRa transceiver module in addition using a simple wire. Since
the module only implements the LoRa physical layer, the LoRaWAN protocol stack must be implemented in software
on the microcontroller. We are using the Arduino library LMIC for that purpose (see below). The implemented
LoRaWAN functionality is compatible with LoRaWAN Class A/C.

Fig. 15: Feather 32u4 with RFM95 LoRa Radio-868 MHz-RadioFruit from Adafruit. Feather 32u4 LoRa tutorial with
explanations, datasheets, and examples.

Sensor

We have attached a DHT22 sensor to the microcontroller board, which measures air temperature and humidity. The
minimal time interval between two measurements is 2 seconds. All data transfers between the DHT22 and the mi-
crocontroller use a single digital line. The sensor data pin is attached to a GPIO pin (here: Digital Pin 6) of the
microcontroller. In addition, a so-called pull-up resistor of 4.7k to 10k Ohm must be connected between the data line
and VCC (+3.3V). The DHT22 datasheet provides more technical details about the DHT22 Sensor. A tutorial on how

2.5. Adafruit 32u4 LoRa with Display 69

https://www.adafruit.com/product/3078
https://learn.adafruit.com/adafruit-feather-32u4-radio-with-lora-radio-module/
https://learn.adafruit.com/adafruit-feather-32u4-radio-with-lora-radio-module/
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://learn.adafruit.com/dht?view=all
https://learn.adafruit.com/dht?view=all

TUM-GIS Sensor Nodes, Release v0.0.1

to use the DHT22 sensor with Arduino microcontrollers is provided here. The sensor is available in German shops for
around 4 C to 10 C.

Display / Beeper

On top of the microcontroller board we have attached an Adafruit Display Wing with a 4 digit 14 segments LED
display. It can show 0-4 numbers or letters (upper case and lower case). The display controller is using the I2C
protocol and the I2C pins SDA and SCL are directly connected to the Adafruit Feather via the Wing connectors. The
Wing is using the default I2C address (0x70). Also a 3.3V beeper is installed that is used to indicate that a new message
was received and is now being displayed. The ‘+’ pin of the beeper has to be connected to Digital Pin 12 and the ‘-‘
pin to GND. The display and the beeper can be used to notify a user with (very) short messages. The reason why we
have included this is mostly to experiment with and to demonstrate the downlink capabilities of LoRaWAN. When a
downlink message has been queued it will be transmitted to the node right after it has transmitted the next data packet
(uplink data). Hence, it depends on the transmission time period how long it can take unless the node receives and
displays a downlink message.

Case

The case was 3D printed using the design files provided by Adafruit. The case consists of three parts. Part 1 is the
main enclosure (it does not have a switch holder or tabs, the design file is feather-case.stl). Part 2 is the battery holder
(with a slide switch holder, the design file is feather-bat-switch.stl). Part 3 is the case topper (with a cutout for the
Adafruit Feather Wing, the design file is feather-top-wing.stl). All design files can be downloaded from Thingiverse.

We have ordered the three parts from an online 3D printing service. The quality of the delivered parts was generally
ok, but not good enough for snapping the three parts firmly together. It is not clear yet whether this is a problem of the
design files or of the printing service. We used two rubber bands In order to fix the three parts together.

Once all these connection are made, the board is connected with a computer using a USB cable. Further, steps of
software part needs to be followed. But, before that we need to register a new device on the service that we are using.

2.5.2 Software

The sensor node has been programmed using the Arduino IDE. Please note, that in the Arduino framework a program
is called a ‘Sketch’.

After the sketch has successfully established a connection to The Things Network it reports the air temperature,
humidity, and the voltage of a (possibly) attached LiPo battery every 5 minutes. All three values are being encoded in
two byte integer values each (in most significant byte order) and then sent as a 6 bytes data packet to the respective
TTN application using LoRaWAN port 7. Please note, that LoRaWAN messages can be addressed to ports 1-255 (port
0 is reserved); these ports are similar to port numbers 0-65535 when using the Internet TCP/IP protocol. Voltage and
humidity values are always greater or equal to 0, but the temperature value can also become negative. Negative values
are represented as a two’s complement; this must be considered in the Payload Decoding Function used in The Things
Network (see here).

In between two sensor readings the microcontroller is going into deep sleep mode to save battery power. We still have
to run some tests to find out for how long the system can run using the 2000 mAh LiPo battery and the current version
of the sketch. Showing a received message on the display draws a considerable amount of power and will shorten
battery life significantly. Hence, when running on battery it is recommended to clear a displayed message soon by
sending a simple space character (0x20). (Further optimizations would be possible, for example, not switching on the
LED on the microcontroller board during LoRa data transmissions.)

The employed RFM95 LoRa module does not provide built-in support of the LoRaWAN protocol. Thus, it has to
be implemented on the ATmega32u4 microcontroller. We use the IBM LMIC (LoraMAC-in-C) library for Arduino.
Since the ATmega32u4 microcontroller only has 32 KB of flash memory and the LMIC library is taking most of it,

70 Chapter 2. Contents

https://learn.adafruit.com/dht?view=all
https://learn.adafruit.com/dht?view=all
https://learn.adafruit.com/14-segment-alpha-numeric-led-featherwing
https://learn.adafruit.com/14-segment-alpha-numeric-led-featherwing
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://learn.adafruit.com/3d-printed-case-for-adafruit-feather/overview
https://www.thingiverse.com/thing:2209964
https://www.arduino.cc/en/main/software
https://en.wikipedia.org/wiki/Two%27s_complement
https://github.com/matthijskooijman/arduino-lmic

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 16: The Adafruit Feather 32u4 RFM95 LoRa installed in a 3D printed case. On top of the microcontroller board
an Adafruit Display Wing with a 4 digit 14 segments LED display is attached. Right of the display the DHT22
temperature / humidity sensor is mounted. In the rear part of the case a 2000 mAh polymer (LiPo) battery is installed.
On the right side the antenna is visible.

2.5. Adafruit 32u4 LoRa with Display 71

TUM-GIS Sensor Nodes, Release v0.0.1

there is only very limited code space left for the application dealing with the sensors (about 2 KB). Nevertheless, this
is sufficient to query some sensors like in our example the DHT22.

Now download and run the Arduino Sketch for Adafruit32u4 LoRa with display sensor node file in the Arduino IDE.
This code was created by merging the example code of both the sensors and the ttn-otaa example from the lmic library.
Some required changes were made while merging the example codes. The user should change the network session
key, app session key and device address in the code before compiling. These keys can be obtained from the TTN
account as shown in the services section.

Listing 18: Modify the keys in highlighted lines.

1 // This EUI must be in little-endian format, so least-significant-byte
2 // first. When copying an EUI from ttnctl output, this means to reverse
3 // the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3, 0x70.
4 static const u1_t PROGMEM APPEUI[8]={ 0x55, 0xC1, 0x00, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX }

→˓;
5 void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
6

7 // This should also be in little endian format, see above.
8 static const u1_t PROGMEM DEVEUI[8]={ 0xF6, 0xE2, 0x10, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX }

→˓;
9 void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}

10

11 // This key should be in big endian format (or, since it is not really a
12 // number but a block of memory, endianness does not really apply). In
13 // practice, a key taken from ttnctl can be copied as-is.
14 // The key shown here is the semtech default key.
15 static const u1_t PROGMEM APPKEY[16] = { 0xC2, 0x21, 0x2E, 0x7A, 0xXX, 0xXX, 0xXX,

→˓0xXX, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX };
16 void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}

Following is the example code that can be used to measure the battery voltage of the sensor node:

Listing 19: Code for measuring the battery voltage

1 measuredvbat = analogRead(VBATPIN);
2 measuredvbat *= 2.0; // we divided by 2, so multiply back
3 measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage
4 measuredvbat /= 1023.0; // convert to voltage
5 int16_vbat = round(measuredvbat * 100.0);
6 mydata[4] = (byte) (int16_vbat >> 8);
7 mydata[5] = (byte) (int16_vbat & 0x00FF);
8 SERIALDEBUG_PRINT(" \t");
9 SERIALDEBUG_PRINT("Battery Voltage: ");

10 SERIALDEBUG_PRINT(measuredvbat);
11 SERIALDEBUG_PRINTLN(" V");

2.5.3 Services

The services used for this sensor-node are:

• TheThingsNetwork service for LoRaWAN network service.

• TheThingsNetwork - OGC SensorWeb integration for uploading LoRaWAN sensor data into OGC infrastructure.

72 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

Registration of the sensor node with The Things Network (TTN)

The LoRaWAN protocol makes use of a number of different identifiers, addresses, keys, etc. These are required to
unambiguously identify devices, applications, as well as to encrypt and decrypt messages. The names and meanings
are nicely explained on a dedicated TTN web page.

The sketch given above connects the sensor node with The Things Network (TTN) using the Over-the-Air-Activation
(OTAA) mode. In this mode, we use the three keys AppEUI, DevEUI, AppKey. The DevEUI should be delivered
with the sensor node by the manufacturer, the other two keys are created using the TTN console. Each sensor node
must be manually registered in the TTN console before it can be started. This assumes that you already have a TTN
user account (which needs to be created otherwise). In the TTN console create a new device and enter the DevEUI
number that was shipped with the Adafruit Feather LoRa board. Note that the shipped number only consists of 6 bytes
while LoRaWAN requires an 8 bytes DevEUI. We simply add 0x00 0x00 in the middle of the 6 bytes provided. If
you have lost the provided DevEUI you can also let the TTN console create a new one. After the registration of the
device the respective keys (AppEUI, DevEUI, AppKey) can be copied from the TTN console and must be pasted into
the the proper places in the source code of the sketch above. Please make sure that you choose for each of the three
keys the correct byte ordering (DevEUI, AppEUI in LSB; AppKey in MSB). A detailed explanation of these steps is
given here. Then the sketch can be compiled and uploaded to the Adafruit Feather 32u4 LoRa microcontroller. Note
that the three constants (AppEUI, DevEUI, AppKey) must be changed in the source code for every new sensor node.

Using the OTAA mode has the advantage over the ABP (activation by personalization) mode that during connection the
session keys are newly created which improves security. Another advantage is that the packet counter is automatically
reset to 0 both in the node and in the TTN application.

TTN Payload Decoding

Everytime a data packet is received by a TTN application a dedicated Javascript function is being called (Payload
Decoder Function). This function can be used to decode the received byte string and to create proper Javascript
objects or values that can directly be read by humans when looking at the incoming data packet. This is also useful
to format the data in a specific way that can then be forwarded to an external application (e.g. a sensor data platform
like MyDevices or Thingspeak). Such a forwarding can be configured in the TTN console in the “Integrations” tab.
TTN payload decoder for Adafruit32u4 LoRa with display sensor node given here checks if a packet was received on
LoRaWAN port 7 and then assumes that it consists of the 6 bytes encoded as described above. It creates the three
Javascript objects ‘temperature’, ‘humidity’, and ‘vbattery’. Each object has two fields: ‘value’ holds the value and
‘uom’ gives the unit of measure. The source code can simply be copied and pasted into the ‘decoder’ tab in the TTN
console after having selected the application. Choose the option ‘Custom’ in the ‘Payload Format’ field. Note that
when you also want to handle other sensor nodes sending packets on different LoRaWAN ports, then the Payload
Decoder Function can be extended after the end of the if (port==7) {. . . } statement by adding else if (port==8) {. . . }
else if (port==9) {. . . } etc.

The Things Network - OGC SensorWeb Integration

The presented Payload Decoder Function works also with the TTN-OGC SWE Integration for the 52° North Sensor
Observation Service (SOS). This software component can be downloaded from this repository. It connects a TTN
application with a running transactional Sensor Observation Service 2.0.0 (SOS). Data packets received from TTN are
imported into the SOS. The SOS persistently stores sensor data from an arbitrary number of sensor nodes and can be
queried for the most recent as well as for historic sensor data readings. The 52° North SOS comes with its own REST
API and a nice web client allowing to browse the stored sensor data in a convenient way.

We are running an instance of the 52° North SOS and the TTN-OGC SWE Integration. The web client for this
LoRaWAN sensor node can be accessed on this page. Here is a screenshot showing the webclient:

2.5. Adafruit 32u4 LoRa with Display 73

https://www.thethingsnetwork.org/docs/lorawan/addressing.html
https://console.thethingsnetwork.org
https://www.thethingsnetwork.org/docs/devices/registration.html
https://learn.adafruit.com/the-things-network-for-feather?view=all
https://mydevices.com/
https://thingspeak.com/
https://github.com/52North/ttn-ogcswe-integration
https://github.com/52North/SOS
https://github.com/52North/SOS
https://github.com/52North/ttn-ogcswe-integration
https://www.opengeospatial.org/standards/sos
http://129.187.38.201:8080/ttn-sos-integration/static/client/helgoland/index.html#/diagram?ts=ttnOGC__30,ttnOGC__29,ttnOGC__28

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 17: Web client for data visualization

Sending a message to the Sensor Node (Downlink)

Using the TTN console we can send a message (i.e. a byte string) to the sensor node. In the TTN console application
page click on the respective application. Then click on the ‘Devices’ tab and choose the proper sensor node (here:
adafruit-feather-32u4-lora3). On the overview page scroll down to the ‘Downlink’ section. In the ‘Payload’ field enter
1 to 4 bytes. In order to show digits or letters on the LED display these must be ASCII encoded and have to be entered
as hexadecimal numbers. When you click on the ‘Send’ button the message will be queued and the next time when
the node sends its data packet (uplink) it will receive the message. The first 4 bytes will be shown on the display
and the beeper indicates the reception of a new downlink message. In order to blank the display just send a one byte
message with the value ‘20’ (hexadecimal for 32, which is the ASCII code for a space). When the node receives just a
single blank character it will not produce a beeping sound. There is a nice web page offering online encoding of text
to ASCII numbers in hexadecimal encoding. For example, in order to display the text ‘LoRa’, the four hexadecimal
numbers 4C 6F 52 61 have to be entered in the Payload entry field.

2.5.4 Code files

Listing 20: Arduino Sketch for Adafruit32u4 LoRa with display sensor
node

1 /***
2 * Arduino Sketch for a LoRaWAN sensor node that is registered with
3 * 'The Things Network' (TTN) www.thethingsnetwork.org
4 *
5 * Author: Thomas H. Kolbe, thomas.kolbe@tum.de
6 * Version: 1.0.0
7 * Last update: 2018-12-09

(continues on next page)

74 Chapter 2. Contents

https://console.thethingsnetwork.org/applications
https://console.thethingsnetwork.org/applications
https://en.wikipedia.org/wiki/ASCII
https://www.rapidtables.com/convert/number/ascii-hex-bin-dec-converter.html

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

8 *
9 * The sensor node is based on the Adafruit Feather LoRa microcontroller board

10 * with either the AVR ATmega32u4 or the ATSAMD21G18 ARM Cortex M0 microcontroller.
11 * See https://learn.adafruit.com/adafruit-feather-32u4-radio-with-lora-radio-module/
12 * or https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module/
13 * The sensor node uses a DHT22 sensor measuring air temperature and humidity.
14 * Also the voltage of an attached LiPo battery is monitored and sent as
15 * an observation. All three values are encoded as 2 byte integer values each.
16 * Hence, the total message payload is 6 bytes. Before the values are converted
17 * to integers they are multiplied by 100 to preserve 2 digits after the decimal
18 * point. Thus, the received values must be divided by 100 to obtain the measured
19 * values. The payload is sent every 300s to LoRaWAN port 7. The following
20 * Javascript function can be used as a payload decoding function in TTN:
21 *
22 * function Decoder(bytes, port) {
23 * // Decode an uplink message from a buffer
24 * // (array) of bytes to an object of fields.
25 * if (port==7) {
26 * var decoded = {
27 * "temperature": (bytes[0] << 8 | bytes[1]) / 100.0,
28 * "humidity": (bytes[2] << 8 | bytes[3]) / 100.0,
29 * "vbattery": (bytes[4] << 8 | bytes[5]) / 100.0
30 * };
31 * } else {
32 * var decoded = null;
33 * }
34 * return decoded;
35 * }
36 *
37 * In between two data transmissions the microcontroller board can go
38 * into sleep mode to reduce energy consumption for extended operation
39 * time when running on battery. Usage of the sleep mode must be
40 * explicitly configured below.
41 *
42 * Note, that the DHT22 data pin must be connected to Digital Pin 6 of the
43 * microcontroller board (for the Feather 32u4) or Digital Pin 12 (for
44 * the Feather M0). A resistor of 4.7k - 10k Ohm must be connected to
45 * the data pin and VCC (+3.3V).
46 *
47 * Digital Pin 5 (for the Feather 32u4) must be connected to DIO1 of the
48 * LoRa transceiver module using a simple wire.
49 *
50 * For this node we also attach an Adafruit Feather Wing with a four digit
51 * 14-segments LED display. The display controller is using I2C and the
52 * I2C pins SDA and SCL are directly connected to the Adafruit Feather
53 * via the Wing connectors. The wing is using the default I2C address
54 * (0x70). Any LoRaWAN downlink message sent to this node is shown on
55 * the display (only the first 4 characters). We treat each byte of the
56 * received payload as a character in ASCII code. Besides numbers and
57 * letters in upper and lower case also some special characters are
58 * supported. For further details on the Feather Display Wing see here:
59 * https://learn.adafruit.com/14-segment-alpha-numeric-led-featherwing
60 *
61 * In order to notify persons standing nearby that a new text was received
62 * we let the node beep a couple of times. Therefore, Digital Pin 12 (for
63 * the Feather 32u4) should be connected to the '+' port of a 3.3V buzzer
64 * module. The '-' port of the buzzer must be connected to GND.

(continues on next page)

2.5. Adafruit 32u4 LoRa with Display 75

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

65 * If a payload containing just a single space (character code 0x20) is
66 * received, the display will be blanked without emitting beeps.
67 *
68 * Note that if the LED display shows some text this will draw a
69 * significant amount of power. This will certainly reduce the operational
70 * duration when running on battery.
71 *
72 * The code is based on the Open Source library LMIC implementing the LoRaWAN
73 * protocol stack on top of a given LoRa transceiver module (here: RFM95 from
74 * HopeRF, which uses the Semtech SX1276 LoRa chip). The library is originally
75 * being developed by IBM and has been ported to the Arduino platform. See
76 * notes below from the original developers.
77 *
78 ***
79 * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
80 *
81 * Permission is hereby granted, free of charge, to anyone
82 * obtaining a copy of this document and accompanying files,
83 * to do whatever they want with them without any restriction,
84 * including, but not limited to, copying, modification and redistribution.
85 * NO WARRANTY OF ANY KIND IS PROVIDED.
86 *
87 * This uses OTAA (Over-the-air activation), where a DevEUI and
88 * application key is configured, which are used in an over-the-air
89 * activation procedure where a DevAddr and session keys are
90 * assigned/generated for use with all further communication.
91 *
92 * Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
93 * g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
94 * violated by this sketch when left running for longer)!
95 *
96 * To use this sketch, first register your application and device with
97 * the things network, to set or generate an AppEUI, DevEUI and AppKey.
98 * Multiple devices can use the same AppEUI, but each device has its own
99 * DevEUI and AppKey.

100 *
101 * Do not forget to define the radio type correctly in config.h.
102 *
103 ***/
104

105 // If the following line is uncommented, messages are being printed out to the
106 // serial connection for debugging purposes. When using the Arduino Integrated
107 // Development Environment (Arduino IDE), these messages are displayed in the
108 // Serial Monitor selecting the proper port and a baudrate of 115200.
109

110 // #define SERIALDEBUG
111

112 #ifdef SERIALDEBUG
113 #define SERIALDEBUG_PRINT(...) Serial.print(__VA_ARGS__)
114 #define SERIALDEBUG_PRINTLN(...) Serial.println(__VA_ARGS__)
115 #else
116 #define SERIALDEBUG_PRINT(...)
117 #define SERIALDEBUG_PRINTLN(...)
118 #endif
119

120 // If the following line is uncommented, the sensor node goes into sleep mode
121 // in between two data transmissions. Also the 2secs time between the

(continues on next page)

76 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

122 // initialization of the DHT22 sensor and the reading of the observations
123 // is spent in sleep mode.
124 // Note, that on the Adafruit Feather 32u4 LoRa board the Serial connection
125 // gets lost as soon as the board goes into sleep mode, and it will not be
126 // established again. Thus, the definition of SERIALDEBUG should be commented
127 // out above when using sleep mode with this board.
128

129 #define SLEEPMODE
130

131 #ifdef SLEEPMODE
132 #include <Adafruit_SleepyDog.h>
133 #endif
134

135 #include <lmic.h>
136 #include <hal/hal.h>
137 #include <SPI.h>
138

139 #include <util/atomic.h>
140 #include <avr/power.h>
141

142 #include <DHT.h>
143

144 #ifdef __AVR_ATmega32U4__
145 #define DHTPIN 6 // Arduino Digital Pin which is connected to the

→˓DHT sensor for Feather 32u4.
146 #endif
147 #ifdef ARDUINO_SAMD_FEATHER_M0
148 #define DHTPIN 12 // Arduino Digital Pin which is connected to the

→˓DHT sensor for Feather M0.
149 #endif
150 #define DHTTYPE DHT22 // DHT 22 (AM2302)
151

152 DHT dht(DHTPIN, DHTTYPE); // create the sensor object
153

154

155 #ifdef __AVR_ATmega32U4__
156 #define VBATPIN A9 // battery voltage is measured from Analog Input A9

→˓for Feather 32u4
157 #endif
158 #ifdef ARDUINO_SAMD_FEATHER_M0
159 #define VBATPIN A7 // battery voltage is measured from Analog Input A7

→˓for Feather M0
160 #endif
161

162 #ifdef __AVR_ATmega32U4__
163 extern volatile unsigned long timer0_overflow_count;
164 #endif
165

166 #include <Wire.h>
167 #include <Adafruit_GFX.h>
168 #include "Adafruit_LEDBackpack.h"
169

170 Adafruit_AlphaNum4 alpha4 = Adafruit_AlphaNum4();
171

172 #define BUZZERPIN 12 // Arduino Digital Pin which is connected to the
→˓buzzer module

173

(continues on next page)

2.5. Adafruit 32u4 LoRa with Display 77

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

174

175 // The following three constants (AppEUI, DevEUI, AppKey) must be changed
176 // for every new sensor node. We are using the LoRaWAN OTAA mode (over the
177 // air activation). Each sensor node must be manually registered in the
178 // TTN console at https://console.thethingsnetwork.org before it can be
179 // started. In the TTN console create a new device and enter the DevEUI
180 // number that was shipped with the Adafruit Feather LoRa board. Note that
181 // the shipped number only consists of 6 bytes while LoRaWAN requires
182 // an 8 bytes DevEUI. We simply add 0x00 0x00 in the middle of the 6 bytes
183 // provided. If you have lost the provided DevEUI you can also let the
184 // TTN console create a new one. After the registration of the device the
185 // three values can be copied from the TTN console. A detailed explanation
186 // of these steps is given in
187 // https://learn.adafruit.com/the-things-network-for-feather?view=all
188

189 // This EUI must be in little-endian format, so least-significant-byte
190 // first. When copying an EUI from ttnctl output, this means to reverse
191 // the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3, 0x70.
192 static const u1_t PROGMEM APPEUI[8]={ 0x55, 0xC1, 0x00, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX }

→˓;
193 void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
194

195 // This should also be in little endian format, see above.
196 static const u1_t PROGMEM DEVEUI[8]={ 0xF6, 0xE2, 0x10, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX }

→˓;
197 void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
198

199 // This key should be in big endian format (or, since it is not really a
200 // number but a block of memory, endianness does not really apply). In
201 // practice, a key taken from ttnctl can be copied as-is.
202 // The key shown here is the semtech default key.
203 static const u1_t PROGMEM APPKEY[16] = { 0xC2, 0x21, 0x2E, 0x7A, 0xXX, 0xXX, 0xXX,

→˓0xXX, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX };
204 void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
205

206

207 // The following array of bytes is a placeholder to contain the message payload
208 // which is transmitted to the LoRaWAN gateway. We are currently only using 6 bytes.
209 // Please make sure to extend the size of the array, if more sensors should be
210 // attached to the sensor node and the message payload becomes larger than 10 bytes.
211 static uint8_t mydata[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0xA};
212

213 static osjob_t sendjob;
214

215 // Schedule transmission every TX_INTERVAL seconds (might become longer due to duty
216 // cycle limitations). The total interval time is 2secs for the measurement
217 // plus 3secs for the LoRaWAN packet transmission plus SLEEP_TIME seconds
218 // plus SLEEP_TIME seconds (microcontroller in sleep mode)
219 const unsigned int TX_INTERVAL = 300; // overall cycle time (send one set of

→˓observations every 5mins)
220 const unsigned int TX_TIME = 22; // rough estimate of transmission time of

→˓a single packet
221 const unsigned int MEASURE_TIME = 2; // seconds measuring time
222 const unsigned int SLEEP_TIME = TX_INTERVAL - TX_TIME - MEASURE_TIME;
223 const unsigned int WAIT_TIME = TX_INTERVAL - TX_TIME - MEASURE_TIME;
224

225 // Pin mapping of the LoRa transceiver. Please make sure that DIO1 is connected
(continues on next page)

78 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

226 // to Arduino Digital Pin 6 using an external wire. DIO2 is left unconnected
227 // (it is only required, if FSK modulation instead of LoRa would be used).
228 #ifdef __AVR_ATmega32U4__
229 const lmic_pinmap lmic_pins = {
230 .nss = 8,
231 .rxtx = LMIC_UNUSED_PIN,
232 .rst = 4,
233 .dio = {7, 5, LMIC_UNUSED_PIN}, // in the Feather 32u4 DIO0 is connected to

→˓Arduino Digital Pin 7
234 };
235 #endif
236 #ifdef ARDUINO_SAMD_FEATHER_M0
237 const lmic_pinmap lmic_pins = {
238 .nss = 8,
239 .rxtx = LMIC_UNUSED_PIN,
240 .rst = 4,
241 .dio = {3, 6, LMIC_UNUSED_PIN}, // in the Feather M0 DIO0 is connected to

→˓Arduino Digital Pin 3
242 };
243 #endif
244

245 void onEvent (ev_t ev) {
246 SERIALDEBUG_PRINT(os_getTime());
247 SERIALDEBUG_PRINT(": ");
248 switch(ev) {
249 case EV_SCAN_TIMEOUT:
250 SERIALDEBUG_PRINTLN(F("EV_SCAN_TIMEOUT"));
251 break;
252 case EV_BEACON_FOUND:
253 SERIALDEBUG_PRINTLN(F("EV_BEACON_FOUND"));
254 break;
255 case EV_BEACON_MISSED:
256 SERIALDEBUG_PRINTLN(F("EV_BEACON_MISSED"));
257 break;
258 case EV_BEACON_TRACKED:
259 SERIALDEBUG_PRINTLN(F("EV_BEACON_TRACKED"));
260 break;
261 case EV_JOINING:
262 SERIALDEBUG_PRINTLN(F("EV_JOINING"));
263 break;
264 case EV_JOINED:
265 SERIALDEBUG_PRINTLN(F("EV_JOINED"));
266

267 // Disable link check validation (automatically enabled
268 // during join, but not supported by TTN at this time).
269 // LMIC_setLinkCheckMode(0);
270 break;
271 case EV_RFU1:
272 SERIALDEBUG_PRINTLN(F("EV_RFU1"));
273 break;
274 case EV_JOIN_FAILED:
275 SERIALDEBUG_PRINTLN(F("EV_JOIN_FAILED"));
276 break;
277 case EV_REJOIN_FAILED:
278 SERIALDEBUG_PRINTLN(F("EV_REJOIN_FAILED"));
279 break;
280 case EV_TXCOMPLETE:

(continues on next page)

2.5. Adafruit 32u4 LoRa with Display 79

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

281 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the
→˓voltage LOW

282 SERIALDEBUG_PRINTLN(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
283 if (LMIC.txrxFlags & TXRX_ACK)
284 SERIALDEBUG_PRINTLN(F("Received ack"));
285 if (LMIC.dataLen) {
286 #ifdef SERIALDEBUG
287 SERIALDEBUG_PRINT(F("Received "));
288 SERIALDEBUG_PRINT(LMIC.dataLen);
289 SERIALDEBUG_PRINT(F(" bytes of payload: 0x"));
290 for (int i=0; i<LMIC.dataLen; i++) {
291 if (LMIC.frame[LMIC.dataBeg + i] < 0x10) {
292 SERIALDEBUG_PRINT(F("0"));
293 }
294 SERIALDEBUG_PRINT(LMIC.frame[LMIC.dataBeg + i], HEX);
295 }
296 SERIALDEBUG_PRINTLN();
297 #endif
298 // add your code to handle a received downlink data packet here

→˓

299 alpha4.clear();
300 for (int i=0; i<LMIC.dataLen && i<4; i++) {
301 alpha4.writeDigitAscii(i, LMIC.frame[LMIC.dataBeg + i]);
302 }
303 alpha4.writeDisplay();
304 if (!(LMIC.frame[LMIC.dataBeg]==' ' && LMIC.dataLen==1))
305 messagebeep();
306 }
307

308 #ifdef SLEEPMODE
309 // Schedule next transmission in 1ms second after the board returns from

→˓sleep mode
310 os_setTimedCallback(&sendjob, os_getTime()+ms2osticks(1), do_send);
311

312 SERIALDEBUG_PRINTLN("going to sleep now ... ");
313 // lmic library sleeps automatically after transmission has been completed
314

315 doSleep((uint32_t)SLEEP_TIME*1000);
316 /*
317 int sleepcycles = (int)SLEEP_TIME / 8;
318 int restsleep = (int)SLEEP_TIME % 8;
319 for(int i=0; i < sleepcycles; i++) {
320 Watchdog.sleep(8000); // maximum seems to be 8 seconds
321 SERIALDEBUG_PRINT('.');
322 }
323 if (restsleep) {
324 Watchdog.sleep(restsleep*1000);
325 SERIALDEBUG_PRINT('*');
326 }
327 SERIALDEBUG_PRINTLN("... woke up again");
328

329 #ifdef __AVR_ATmega32U4__
330 // The following statement is required to prevent that LMIC spends another
331 // couple of seconds busy waiting for some RX packets. This is only

→˓required
332 // when using SLEEPMODE, because during sleep mode the Arduino timer

→˓variables
(continues on next page)

80 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

333 // are not being incremented and LMIC job scheduling is based on this.
334 // timer0_overflow_count += 3E6;
335

336 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
337 extern volatile unsigned long timer0_millis;
338 extern volatile unsigned long timer0_overflow_count;
339 timer0_millis += SLEEP_TIME*1000;
340 // timer0 uses a /64 prescaler and overflows every 256 timer ticks
341 timer0_overflow_count += microsecondsToClockCycles((uint32_t)SLEEP_

→˓TIME * 1000000) / (64 * 256);
342 }
343 #endif
344 */
345 // We need to reset the duty cycle limits within the LMIC library.
346 // The reason is that in sleep mode the Arduino system timers millis and

→˓micros
347 // do not get incremented. However, LMIC monitors the adherence to the
348 // LoRaWAN duty cycle limitations using the system timers millis and

→˓micros.
349 // Since LMIC does not know that we have slept for a long time and duty
350 // cycle requirements in fact are met, we must reset the respective LMIC

→˓timers
351 // in order to prevent the library to wait for some extra time (which

→˓would
352 // not use sleep mode and, thus, would waste battery energy).
353 LMIC.bands[BAND_MILLI].avail = os_getTime();
354 LMIC.bands[BAND_CENTI].avail = os_getTime();
355 LMIC.bands[BAND_DECI].avail = os_getTime();
356 #else
357 // Schedule next transmission
358 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(WAIT_TIME), do_

→˓send);
359 #endif
360 break;
361 case EV_LOST_TSYNC:
362 SERIALDEBUG_PRINTLN(F("EV_LOST_TSYNC"));
363 break;
364 case EV_RESET:
365 SERIALDEBUG_PRINTLN(F("EV_RESET"));
366 break;
367 case EV_RXCOMPLETE:
368 // data received in ping slot
369 SERIALDEBUG_PRINTLN(F("EV_RXCOMPLETE"));
370 break;
371 case EV_LINK_DEAD:
372 SERIALDEBUG_PRINTLN(F("EV_LINK_DEAD"));
373 break;
374 case EV_LINK_ALIVE:
375 SERIALDEBUG_PRINTLN(F("EV_LINK_ALIVE"));
376 break;
377 default:
378 SERIALDEBUG_PRINTLN(F("Unknown event"));
379 break;
380 }
381 }
382

383 void do_send(osjob_t* j){
(continues on next page)

2.5. Adafruit 32u4 LoRa with Display 81

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

384 // Check if there is not a current TX/RX job running
385 if (LMIC.opmode & OP_TXRXPEND) {
386 SERIALDEBUG_PRINTLN(F("OP_TXRXPEND, not sending"));
387 } else {
388 // Prepare upstream data transmission at the next possible time.
389

390 float temperature, humidity, measuredvbat;
391 int16_t int16_temperature, int16_humidity, int16_vbat;
392

393 // Start a measurement to update the sensor's internal temperature & humidity
→˓reading.

394 // Note, that when fetching measurements from a DHT22 sensor, the reported
395 // values belong to the measurement BEFORE the current measurement.
396 // Therefore, in order to get current observations, we first perform a new

→˓measurement
397 // and wait 2 secs (which is the minimum time between two sensor observations

→˓for
398 // the DHT22) and then directly retrieve the observations again.
399

400 temperature = dht.readTemperature();
401 #ifdef SLEEPMODE
402 // Watchdog.sleep(MEASURE_TIME * 1000UL);
403 doSleep(MEASURE_TIME * 1000UL);
404 #else
405 delay(MEASURE_TIME * 1000UL);
406 #endif
407

408 // Now read the recently measured temperature (2 secs ago) as Celsius (the
→˓default)

409 temperature = dht.readTemperature();
410

411 // Read the recently measured humidity (2 secs ago)
412 humidity = dht.readHumidity();
413

414 // Check if any reads failed and exit early (to try again).
415 if (isnan(humidity) || isnan(temperature)) {
416 SERIALDEBUG_PRINTLN("Failed to read from DHT sensor!");
417 // blink the LED five times to indicate that the sensor values could not

→˓be read
418 for (int i=0; i<5; i++) {
419 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on by making the

→˓voltage HIGH
420 delay(150);
421 digitalWrite(LED_BUILTIN, LOW); // turn the LED on by making the

→˓voltage HIGH
422 delay(150);
423 }
424 // ok, then wait for another period and try it again
425 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_

→˓send);
426 } else {
427 SERIALDEBUG_PRINT("Humidity: ");
428 SERIALDEBUG_PRINT(humidity);
429 SERIALDEBUG_PRINT(" %\t");
430 SERIALDEBUG_PRINT("Temperature: ");
431 SERIALDEBUG_PRINT(temperature);
432 SERIALDEBUG_PRINT(" °C ");

(continues on next page)

82 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

433

434 int16_temperature = round(100.0*temperature);
435 int16_humidity = round(100.0*humidity);
436 mydata[0] = (byte) (int16_temperature >> 8);
437 mydata[1] = (byte) (int16_temperature & 0x00FF);
438 mydata[2] = (byte) (int16_humidity >> 8);
439 mydata[3] = (byte) (int16_humidity & 0x00FF);
440

441 measuredvbat = analogRead(VBATPIN);
442 measuredvbat *= 2.0; // we divided by 2, so multiply back
443 measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage
444 measuredvbat /= 1023.0; // convert to voltage
445 int16_vbat = round(measuredvbat * 100.0);
446 mydata[4] = (byte) (int16_vbat >> 8);
447 mydata[5] = (byte) (int16_vbat & 0x00FF);
448 SERIALDEBUG_PRINT(" \t");
449 SERIALDEBUG_PRINT("Battery Voltage: ");
450 SERIALDEBUG_PRINT(measuredvbat);
451 SERIALDEBUG_PRINTLN(" V");
452

453 // Send the 6 bytes payload to LoRaWAN port 7 and do not request an
→˓acknowledgement.

454 // The following call does not directly sends the data, but puts a "send
→˓job"

455 // in the job queue. This job eventually is performed in the call "os_
→˓runloop_once();"

456 // issued repeatedly in the "loop()" method below. After the transmission
→˓is

457 // complete, the EV_TXCOMPLETE event is signaled, which is handled in the
458 // event handler method "onEvent (ev_t ev)" above. In the EV_TXCOMPLETE

→˓branch
459 // then a new call to the "do_send(osjob_t* j)" method is being prepared

→˓for
460 // delayed execution with a waiting time of TX_INTERVAL seconds.
461 LMIC_setTxData2(7, mydata, 6, 0);
462 SERIALDEBUG_PRINTLN(F("Packet queued"));
463 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on by making the

→˓voltage HIGH
464

465 // Next TX is scheduled after TX_COMPLETE event.
466 }
467 }
468 }
469

470 void doSleep(uint32_t time) {
471 ADCSRA &= ~(1 << ADEN);
472 power_adc_disable();
473

474 while (time > 0) {
475 uint16_t slept;
476 if (time < 8000)
477 slept = Watchdog.sleep(time);
478 else
479 slept = Watchdog.sleep(8000);
480

481 // Update the millis() and micros() counters, so duty cycle
482 // calculations remain correct. This is a hack, fiddling with

(continues on next page)

2.5. Adafruit 32u4 LoRa with Display 83

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

483 // Arduino's internal variables, which is needed until
484 // https://github.com/arduino/Arduino/issues/5087 is fixed.
485 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
486 extern volatile unsigned long timer0_millis;
487 extern volatile unsigned long timer0_overflow_count;
488 timer0_millis += slept;
489 // timer0 uses a /64 prescaler and overflows every 256 timer ticks
490 timer0_overflow_count += microsecondsToClockCycles((uint32_t)slept * 1000) /

→˓(64 * 256);
491 }
492

493 if (slept >= time)
494 break;
495 time -= slept;
496 }
497

498 power_adc_enable();
499 ADCSRA |= (1 << ADEN);
500 }
501

502 void beep(bool longbeep) {
503 digitalWrite(BUZZERPIN, HIGH); // turn the BUZZER off by making the voltage LOW
504 if (longbeep)
505 delay(250);
506 else
507 delay(100);
508 digitalWrite(BUZZERPIN, LOW); // turn the BUZZER off by making the voltage LOW
509 delay(100);
510 }
511

512 void messagebeep() {
513 beep(false);
514 beep(true);
515 beep(false);
516 beep(false);
517 delay(200);
518 beep(false);
519 beep(true);
520 beep(false);
521 beep(false);
522 }
523

524 void setup() {
525 pinMode(LED_BUILTIN, OUTPUT);
526 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
527

528 pinMode(BUZZERPIN, OUTPUT);
529 digitalWrite(BUZZERPIN, LOW); // turn the BUZZER off by making the voltage LOW
530

531 alpha4.begin(0x70); // pass in the I2C address of the display
532 alpha4.clear();
533 alpha4.writeDisplay();
534 alpha4.writeDigitAscii(0, 'T');
535 alpha4.writeDigitAscii(1, 'e');
536 alpha4.writeDigitAscii(2, 's');
537 alpha4.writeDigitAscii(3, 't');
538 alpha4.writeDisplay();

(continues on next page)

84 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

539

540 messagebeep();
541

542 delay(10000); // give enough time to open serial monitor (if
→˓needed) or to start uploading of a new sketch

543

544 alpha4.clear();
545 alpha4.writeDisplay();
546

547 #ifdef SERIALDEBUG
548 Serial.begin(115200);
549 // while (!Serial);
550 #endif
551

552 dht.begin(); // initialize DHT22 sensor
553

554 SERIALDEBUG_PRINTLN(F("Starting"));
555

556 #ifdef VCC_ENABLE
557 // For Pinoccio Scout boards
558 pinMode(VCC_ENABLE, OUTPUT);
559 digitalWrite(VCC_ENABLE, HIGH);
560 delay(1000);
561 #endif
562

563 // LMIC init
564 os_init();
565 // Reset the MAC state. Session and pending data transfers will be discarded.
566 LMIC_reset();
567 LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
568

569 #if defined(CFG_eu868)
570 // Set up the channels used by the Things Network, which corresponds
571 // to the defaults of most gateways. Without this, only three base
572 // channels from the LoRaWAN specification are used, which certainly
573 // works, so it is good for debugging, but can overload those
574 // frequencies, so be sure to configure the full frequency range of
575 // your network here (unless your network autoconfigures them).
576 // Setting up channels should happen after LMIC_setSession, as that
577 // configures the minimal channel set.
578 // NA-US channels 0-71 are configured automatically
579 LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
580 LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);

→˓// g-band
581 LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
582 LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
583 LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
584 LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
585 LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
586 LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
(continues on next page)

2.5. Adafruit 32u4 LoRa with Display 85

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

587 LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI);
→˓// g2-band

588 // TTN defines an additional channel at 869.525Mhz using SF9 for class B
589 // devices' ping slots. LMIC does not have an easy way to define set this
590 // frequency and support for class B is spotty and untested, so this
591 // frequency is not configured here.
592 #elif defined(CFG_us915)
593 // NA-US channels 0-71 are configured automatically
594 // but only one group of 8 should (a subband) should be active
595 // TTN recommends the second sub band, 1 in a zero based count.
596 // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.

→˓json
597 LMIC_selectSubBand(1);
598 #endif
599

600 // Disable link check validation
601 // LMIC_setLinkCheckMode(0);
602

603 // TTN uses SF9 for its RX2 window.
604 LMIC.dn2Dr = DR_SF9;
605

606 // Set data rate and transmit power for uplink (note: txpow seems to be ignored
→˓by the library)

607 LMIC_setDrTxpow(DR_SF9,14);
608

609 // Start job. This will initiate the repetitive sending of data packets,
610 // because after each data transmission, a delayed call to "do_send()"
611 // is being scheduled again.
612 do_send(&sendjob);
613

614 // The following settings should further reduce energy consumption. I have not
615 // tested them yet, they are taken from a post in the TTN forum. See
616 // https://www.thethingsnetwork.org/forum/t/adafruit-lora-feather-gateway/2440/50
617 /*
618 power_adc_disable();
619 power_usart0_disable();
620 power_twi_disable();
621 power_timer1_disable();
622 power_timer2_disable();
623 power_timer3_disable();
624 power_usart1_disable();
625 power_usb_disable();
626 USBCON |= (1 << FRZCLK);
627 PLLCSR &= ~(1 << PLLE);
628 USBCON &= ~(1 << USBE);
629 clock_prescale_set(clock_div_2);
630 */
631 }
632

633 void loop() {
634 os_runloop_once();
635 }

86 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

Listing 21: TTN payload decoder for Adafruit32u4 LoRa with display
sensor node

1 function Decoder (bytes, port) {
2 var result = {};
3 var transformers = {};
4

5 if (port==7) {
6 transformers = {
7 'temperature': function transform (bytes) {
8 value=bytes[0]*256 + bytes[1];
9 if (value>=32768) value=value-65536;

10 return value/100.0;
11 },
12 'humidity': function transform (bytes) {
13 return (bytes[0]*256 + bytes[1])/100.0;
14 },
15 'vbattery': function transform (bytes) {
16 return (bytes[0]*256 + bytes[1])/100.0;
17 },
18 }
19

20 result['temperature'] = {
21 value: transformers['temperature'](bytes.slice(0, 2)),
22 uom: 'Celsius',
23 }
24

25 result['humidity'] = {
26 value: transformers['humidity'](bytes.slice(2, 4)),
27 uom: 'Percent',
28 }
29

30 result['vbattery'] = {
31 value: transformers['vbattery'](bytes.slice(4, 6)),
32 uom: 'Volt',
33 }
34 }
35

36 return result;
37 }

2.5.5 References

• Adafruit Feather 32u4 LoRa microntroller

• Adafruit Feather 32u4 LoRa tutorial

• IBM LMIC (LoraMAC-in-C) library for Arduino

• Using Adafruit Feather 32u4 RFM95 as an TTN Node - Stories - Labs

• TTN LoraWan Atmega32U4 based node – ABP version | Primal Cortex’s Weblog

• node-workshop/lora32u4.md at master · kersing/node-workshop · GitHub

• Got Adafruit Feather 32u4 LoRa Radio to work and here is how - End Devices (Nodes) - The Things Network

• Adafruit Feather as LoRaWAN node | Wolfgang Klenk

2.5. Adafruit 32u4 LoRa with Display 87

https://www.adafruit.com/product/3078
https://learn.adafruit.com/adafruit-feather-32u4-radio-with-lora-radio-module/
https://github.com/matthijskooijman/arduino-lmic
https://www.thethingsnetwork.org/labs/story/using-adafruit-feather-32u4-rfm95-as-an-ttn-node
https://primalcortex.wordpress.com/2017/10/31/ttnlorawan32u4node/
https://github.com/kersing/node-workshop/blob/master/lora32u4.md
https://www.thethingsnetwork.org/forum/t/got-adafruit-feather-32u4-lora-radio-to-work-and-here-is-how/6863/35
https://wolfgangklenk.wordpress.com/2017/04/15/adafruit-feather-as-lorawan-node/

TUM-GIS Sensor Nodes, Release v0.0.1

• LMiC on Adafruit Lora Feather successfully sends message to TTN and then halts with “Packet queued” - End
Devices (Nodes) - The Things Network

• GitHub - marcuscbehrens/loralife

• GPS-Tracker - Stories - Labs

On battery saving / using the deep sleep mode

• Adafruit Feather 32u4 LoRa - long transmission time after deep sleep - End Devices (Nodes) - The Things
Network and this

• Full Arduino Mini LoraWAN and 1.3uA Sleep Mode - End Devices (Nodes) - The Things Network

• Adding Method to Adjust hal_ticks Upon Waking Up from Sleep · Issue #109 · matthijskooijman/arduino-lmic

• minilora-test/minilora-test.ino at cbe686826bd84fac8381de47b5f5b02dd47c2ca0 · tkerby/minilora-test

• Arduino-LMIC library with low power mode - Mario Zwiers

2.6 Adafruit M0 LoRa

2.6.1 Hardware

Microcontroller

Fig. 18: Feather M0 with RFM95 LoRa Radio - 900 MHz - RadioFruit from Adafruit. Feather M0 LoRa tutorial with
explanations, datasheets, and examples.

88 Chapter 2. Contents

https://www.thethingsnetwork.org/forum/t/lmic-on-adafruit-lora-feather-successfully-sends-message-to-ttn-and-then-halts-with-packet-queued/3762/25
https://www.thethingsnetwork.org/forum/t/lmic-on-adafruit-lora-feather-successfully-sends-message-to-ttn-and-then-halts-with-packet-queued/3762/25
https://github.com/marcuscbehrens/loralife
https://www.thethingsnetwork.org/labs/story/gps-tracker
https://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/7
https://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/7
https://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/13
https://www.thethingsnetwork.org/forum/t/full-arduino-mini-lorawan-below-1ua-sleep-mode/8059/97
https://github.com/matthijskooijman/arduino-lmic/issues/109
https://github.com/tkerby/minilora-test/blob/cbe686826bd84fac8381de47b5f5b02dd47c2ca0/minilora-test/minilora-test.ino#L190
https://mariozwiers.de/2018/04/04/arduino-lmic-library-with-low-power-mode/
https://www.adafruit.com/product/3178
https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module/downloads

TUM-GIS Sensor Nodes, Release v0.0.1

The Adafruit Feather M0 LoRa board is operated by the 32bit ATSAMD21G18 ARM Cortex M0 microcontroller
running at 48MHz. It has 256 KB flash memory (to store the program code) and 32 KB of RAM (to store variables,
status information, and buffers). The operating voltage of the board is 3.3V (this is important when attaching sensors
and other peripherals; they also must operate on 3.3V). The board offers 20 general purpose digital input/output pins
(20 GPIOs) with 10 analog input pins (with 12bit analog digital converters (ADC)), one analog output pin, one serial
port (programmable Universal Asynchronous Receiver and Transmitter, UART), one I2C port, one SPI port, one USB
port. The board comes with an embedded Lithium polymer battery management chip and status indicator led, which
allows to directly connect a 3.7V LiPo rechargeable battery that will be automatically recharged when the board is
powered over its USB connector. The Adafruit Feather M0 LoRa board is available in German shops from around 37
C to 45 C.

Fig. 19: The Adafruit Feather M0 RFM95 LoRa with attached antenna placed onto a prototyping breadboard. (On this
photo the DHT22 sensor and the LiPo battery are missing; we will upload a new photo in the future)

The LoRa transmitter and receiver is encapsulated within an RFM95 module from the company HopeRF. This module
uses the LoRa chip SX1276 from the company Semtech and is dedicated to the 868 MHz frequency band. The RFM95
module is connected via SPI interface to the microcontroller. Most of the required connections of the LoRa transceiver
pins with the microcontroller are already built-in on the Adafruit Feather M0 LoRa board. However, Digital Pin 6 of
the microcontroller must be connected to DIO1 of the LoRa transceiver module in addition using a simple wire. Since
the module only implements the LoRa physical layer, the LoRaWAN protocol stack must be implemented in software
on the microcontroller. We are using the Arduino library LMIC for that purpose (see below). The implemented
LoRaWAN functionality is compatible with LoRaWAN Class A/C.

2.6. Adafruit M0 LoRa 89

TUM-GIS Sensor Nodes, Release v0.0.1

Sensor

We have attached a DHT22 sensor to the microcontroller board, which measures air temperature and humidity. The
minimal time interval between two measurements is 2 seconds. All data transfers between the DHT22 and the mi-
crocontroller use a single digital line. The sensor data pin is attached to a GPIO pin (here: Digital Pin 12) of the
microcontroller. In addition, a so-called pull-up resistor of 4.7k to 10k Ohm must be connected between the data line
and VCC (+3.3V). The DHT22 datasheet can be accessed here. A tutorial on how to use the DHT22 sensor with
Arduino microcontrollers is provided on this page. The sensor is available in German shops for around 4 C to 10 C.

2.6.2 Software

The sensor node has been programmed using the Arduino IDE. Please note, that in the Arduino framework a program
is called a ‘Sketch’.

Now download and run the Arduino Sketch for Adafruit M0 LoRa sensor node file in the Arduino IDE. After the
sketch has successfully established a connection to The Things Network it reports the air temperature, humidity, and
the voltage of a (possibly) attached LiPo battery every 5 minutes. All three values are being encoded in two byte integer
values each and then sent as a 6 bytes data packet to the respective TTN application using LoRaWAN port 7. Please
note, that LoRaWAN messages can be addressed to ports 1-255 (port 0 is reserved); these ports are similar to port
numbers 0-65535 when using the Internet TCP/IP protocol. Voltage and humidity values are always greater or equal
to 0, but the temperature value can also become negative. Negative values are represented as a two’s complement; this
must be considered in the Payload Decoding Function used in The Things Network (see below).

In between two sensor readings the microcontroller is going into deep sleep mode to save battery power. With a
2000 mAh LiPo battery and the current version of the sketch the system can run for at least 3 months. (Further
optimizations would be possible, for example, not switching on the LED on the microcontroller board during LoRa
data transmissions.)

The employed RFM95 LoRa module does not provide built-in support of the LoRaWAN protocol. Thus, it has to be
implemented on the ARM Cortex M0 microcontroller. We use the IBM LMIC (LoraMAC-in-C) library for Arduino,
which can be downloaded from this repository. The ARM Cortex M0 microcontroller has 256 KB of flash memory,
which is plenty enough for the LMIC library, the code dealing with the sensors, and even some sophisticated analysis
tasks (if required). The source code is given in the following listing:

Note, that the source code is very similar to the source code for the Adafruit Feather 32u4 LoRa board given on the
Wiki page LoRaWAN Node - Adafruit 32u4 LoRa. The source code for the Adafruit Feather 32u4 LoRa board has
also more detailed comments. It is planned to merge them into a single source code that can be used and compiled
for both types of microcontrollers (ATmega32u4 and ARM Cortex M0). The merged source code is already available
from LoRaWAN Node - Adafruit 32u4 LoRa, but was not tested with the M0 microcontroller board yet.

Note also, that there is an open issue regarding the deep sleep mode on the ARM Cortex M0 microcontroller in the
source code above. During deep sleep mode the (software) timers of the LMIC library are not incremented and after
wake-up the library does not recognize that enough time has passed to allow sending another data packet. This built-
in mechanism of the LMIC library should ensure that the sensor node does not exceed the maximum duty cycle for
LoRaWAN of 1%. This somehow also affects the waiting time for a possible downlink data packet coming from the
gateway. As a consequence, the sensor node is not only active for around 2.5 seconds (0.5 seconds to submit the most
recent datapacket to the gateway (uplink) and 2 seconds to wait for possible downlink data packets), but sometimes for
about 5-6 seconds before it goes back into deep sleep mode (this can be seen from the duration the red LED is activated
on the board). These extra seconds awake (with the LED and the LoRa transceiver module switched on) reduce battery
lifetime significantly. The ATmega32u4 microcontroller does not have these problems and can go faster back to deep
sleep mode. As a result the Adafruit Feather 32u4 LoRa board can run with a 1000 mAh LiPo battery for 5 months
and the Adafruit Feather M0 LoRa board with a 2000 mAh LiPo battery for only 3 months.

90 Chapter 2. Contents

https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://learn.adafruit.com/dht?view=all
https://www.arduino.cc/en/main/software
https://github.com/matthijskooijman/arduino-lmic

TUM-GIS Sensor Nodes, Release v0.0.1

2.6.3 Services

The services used for this sensor-node are:

• TheThingsNetwork service for LoRaWAN network service.

• TheThingsNetwork - OGC SensorWeb integration for uploading LoRaWAN sensor data into OGC infrastructure.

Registration of the sensor node with The Things Network (TTN)

The LoRaWAN protocol makes use of a number of different identifiers, addresses, keys, etc. These are required to
unambiguously identify devices, applications, as well as to encrypt and decrypt messages. The names and meanings
are nicely explained on a dedicated TTN web page.

The sketch given above connects the sensor node with The Things Network (TTN) using the Activation-by-
Personalisation (ABP) mode. In this mode, the required keys for data encryption and session management are created
manually using the TTN console window and must be pasted into the source code of the sketch provided in software
section . In order to get this running, you will need to create a new device <https://www.thethingsnetwork.org/docs/
devices/registration.html>‘_ in the TTN console window. This assumes that you already have a TTN user account
(which needs to be created otherwise). In the settings menu of the newly created device the ABP mode must be
selected and the settings must be saved. Then copy the DevAddr, the NwkSKey, and the AppSKey from the TTN
console web page of the newly registered device and paste them into the proper places in the sketch above. Please
make sure that you choose for each of the three keys the correct byte ordering (MSB for all three keys). A detailed
explanation of these steps is given here. Then the sketch can be compiled and uploaded to the Adafruit Feather M0
LoRa microcontroller.

Important hint: everytime the sensor node is reset or being started again, make sure to reset the frame counter of
the registered sensor in the TTN console web page of the registered device. The reason is that in LoRaWAN all
transmitted data packets have a frame counter, which is incremented after each data frame being sent. This way a
LoRaWAN application can avoid receiving and using the same packet again (replay attack). When TTN receives a
data packet, it checks if the frame number is higher than the last one received before. If not, the received packet is
considered to be old or a replay attack and is discarded. When the sensor node is reset or being started again, its
frame counter is also reset to 0, hence, the TTN application assumes that all new packages are old, because their frame
counter is lower than the last frame received (before the reset). A manual frame counter reset is only necessary when
registering the node using ABP mode. In OTAA mode the frame counter is automatically reset in the sensor node and
the TTN network server.

TTN Payload Decoding

Everytime a data packet is received by a TTN application a dedicated Javascript function is being called (Payload
Decoder Function). This function can be used to decode the received byte string and to create proper Javascript
objects or values that can directly be read by humans when looking at the incoming data packet. This is also useful to
format the data in a specific way that can then be forwarded to an external application (e.g. a sensor data platform like
MyDevices or Thingspeak). Such a forwarding can be configured in the TTN console in the “Integrations” tab. TTN
payload decoder for Adafruit M0 LoRa sensor node given here checks if a packet was received on LoRaWAN port
7 and then assumes that it consists of the 6 bytes encoded as described above. It creates the three Javascript objects
‘temperature’, ‘humidity’, and ‘vbattery’. Each object has two fields: ‘value’ holds the value and ‘uom’ gives the unit
of measure. The source code can simply be copied and pasted into the ‘decoder’ tab in the TTN console after having
selected the application. Choose the option ‘Custom’ in the ‘Payload Format’ field. Note that when you also want to
handle other sensor nodes sending packets on different LoRaWAN ports, then the Payload Decoder Function can be
extended after the end of the if (port==7) {. . . } statement by adding else if (port==8) {. . . } else if (port==9) {. . . } etc.

2.6. Adafruit M0 LoRa 91

https://www.thethingsnetwork.org/docs/lorawan/address-space.html
https://console.thethingsnetwork.org
https://www.thethingsnetwork.org/docs/devices/registration.html
https://www.thethingsnetwork.org/docs/devices/registration.html
https://learn.adafruit.com/the-things-network-for-feather?view=all
https://mydevices.com/
https://thingspeak.com/

TUM-GIS Sensor Nodes, Release v0.0.1

The Things Network - OGC SensorWeb Integration

The presented Payload Decoder Function works also with the TTN-OGC SWE Integration for the 52° North Sensor
Observation Service (SOS). This software component can be downloaded from this repository. It connects a TTN
application with a running transactional Sensor Observation Service 2.0.0 (SOS). Data packets received from TTN are
imported into the SOS. The SOS persistently stores sensor data from an arbitrary number of sensor nodes and can be
queried for the most recent as well as for historic sensor data readings. The 52° North SOS comes with its own REST
API and a nice web client allowing to browse the stored sensor data in a convenient way.

We are running an instance of the 52° North SOS and the TTN-OGC SWE Integration. The web client for this
LoRaWAN sensor node can be accessed on this page. Here is a screenshot showing the webclient: (Note that the
sensor node was wrongly registered with TTN using the name adafruit-feather-32u4-lora - it should have been adafruit-
feather-m0-lora. Hence, while the legend says it is a 32u4 microcontroller in fact it is the M0)

Fig. 20: Web client for data visualization

2.6.4 Code files

Listing 22: Arduino Sketch for Adafruit M0 LoRa sensor node

1 /***
2 * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
3 *
4 * Permission is hereby granted, free of charge, to anyone
5 * obtaining a copy of this document and accompanying files,
6 * to do whatever they want with them without any restriction,
7 * including, but not limited to, copying, modification and redistribution.
8 * NO WARRANTY OF ANY KIND IS PROVIDED.
9 *

(continues on next page)

92 Chapter 2. Contents

https://github.com/52North/SOS
https://github.com/52North/SOS
https://github.com/52North/ttn-ogcswe-integration
https://www.opengeospatial.org/standards/sos
http://129.187.38.201:8080/ttn-sos-integration/static/client/helgoland/index.html#/diagram?ts=ttnOGC__10,ttnOGC__11,ttnOGC__9

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

10 * This example sends a valid LoRaWAN packet with payload "Hello,
11 * world!", using frequency and encryption settings matching those of
12 * the The Things Network.
13 *
14 * This uses ABP (Activation-by-personalisation), where a DevAddr and
15 * Session keys are preconfigured (unlike OTAA, where a DevEUI and
16 * application key is configured, while the DevAddr and session keys are
17 * assigned/generated in the over-the-air-activation procedure).
18 *
19 * Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
20 * g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
21 * violated by this sketch when left running for longer)!
22 *
23 * To use this sketch, first register your application and device with
24 * the things network, to set or generate a DevAddr, NwkSKey and
25 * AppSKey. Each device should have their own unique values for these
26 * fields.
27 *
28 * Do not forget to define the radio type correctly in config.h.
29 *
30 ***/
31

32 // #define SERIALDEBUG
33

34 #ifdef SERIALDEBUG
35 #define SERIALDEBUG_PRINT(...) Serial.print(__VA_ARGS__)
36 #define SERIALDEBUG_PRINTLN(...) Serial.println(__VA_ARGS__)
37 #else
38 #define SERIALDEBUG_PRINT(...)
39 #define SERIALDEBUG_PRINTLN(...)
40 #endif
41

42

43 #include <lmic.h>
44 #include <hal/hal.h>
45 #include <SPI.h>
46

47 #include <Adafruit_SleepyDog.h>
48

49 // #include <Adafruit_Sensor.h>
50 #include <DHT.h>
51 // #include <DHT_U.h>
52

53 #define DHTPIN 12 // Pin which is connected to the DHT sensor.
54 #define DHTTYPE DHT22 // DHT 22 (AM2302)
55

56 // DHT_Unified dht(DHTPIN, DHTTYPE);
57 DHT dht(DHTPIN, DHTTYPE);
58

59 #define VBATPIN A7
60

61 // LoRaWAN NwkSKey, network session key
62 // This should be in big-endian (aka msb).
63 static const PROGMEM u1_t NWKSKEY[16] = {NETWORK_SESSION_KEY_HERE_IN_MSB_FORMAT};
64

65 // LoRaWAN AppSKey, application session key
66 // This should also be in big-endian (aka msb).

(continues on next page)

2.6. Adafruit M0 LoRa 93

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

67 static const u1_t PROGMEM APPSKEY[16] = {APPLICATION_SESSION_KEY_HERE_IN_MSB_FORMAT};
68

69 // LoRaWAN end-device address (DevAddr)
70 // See http://thethingsnetwork.org/wiki/AddressSpace
71 // The library converts the address to network byte order as needed, so this should

→˓be in big-endian (aka msb) too.
72 static const u4_t DEVADDR = 0x260XXXXX ; // <-- Change this address for every node!
73

74 // These callbacks are only used in over-the-air activation, so they are
75 // left empty here (we cannot leave them out completely unless
76 // DISABLE_JOIN is set in config.h, otherwise the linker will complain).
77 void os_getArtEui (u1_t* buf) { }
78 void os_getDevEui (u1_t* buf) { }
79 void os_getDevKey (u1_t* buf) { }
80

81 static uint8_t mydata[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0xA};
82 static osjob_t sendjob;
83

84 // Schedule TX every this many seconds (might become longer due to duty
85 // cycle limitations).
86 const unsigned TX_INTERVAL = 1; // seconds transmit cycle plus ...
87 const unsigned SLEEP_TIME = 60*4+55; // seconds sleep time plus ...
88 const unsigned MEASURE_TIME = 2; // seconds measuring time should lead to ...
89 // 5 minute(s) total cycle time
90

91 // Pin mapping
92 const lmic_pinmap lmic_pins = {
93 .nss = 8,
94 .rxtx = LMIC_UNUSED_PIN,
95 .rst = 4,
96 .dio = {3, 6, LMIC_UNUSED_PIN},
97 };
98

99

100 void onEvent (ev_t ev) {
101 // Serial.print(os_getTime());
102 // Serial.print(": ");
103 SERIALDEBUG_PRINT(os_getTime());
104 SERIALDEBUG_PRINT(": ");
105 switch(ev) {
106 case EV_SCAN_TIMEOUT:
107 SERIALDEBUG_PRINTLN(F("EV_SCAN_TIMEOUT"));
108 break;
109 case EV_BEACON_FOUND:
110 SERIALDEBUG_PRINTLN(F("EV_BEACON_FOUND"));
111 break;
112 case EV_BEACON_MISSED:
113 SERIALDEBUG_PRINTLN(F("EV_BEACON_MISSED"));
114 break;
115 case EV_BEACON_TRACKED:
116 SERIALDEBUG_PRINTLN(F("EV_BEACON_TRACKED"));
117 break;
118 case EV_JOINING:
119 SERIALDEBUG_PRINTLN(F("EV_JOINING"));
120 break;
121 case EV_JOINED:
122 SERIALDEBUG_PRINTLN(F("EV_JOINED"));

(continues on next page)

94 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

123 break;
124 case EV_RFU1:
125 SERIALDEBUG_PRINTLN(F("EV_RFU1"));
126 break;
127 case EV_JOIN_FAILED:
128 SERIALDEBUG_PRINTLN(F("EV_JOIN_FAILED"));
129 break;
130 case EV_REJOIN_FAILED:
131 SERIALDEBUG_PRINTLN(F("EV_REJOIN_FAILED"));
132 break;
133 case EV_TXCOMPLETE:
134 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the

→˓voltage LOW
135 SERIALDEBUG_PRINTLN(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
136 if (LMIC.txrxFlags & TXRX_ACK)
137 SERIALDEBUG_PRINTLN(F("Received ack"));
138 if (LMIC.dataLen) {
139 SERIALDEBUG_PRINT(F("Received "));
140 SERIALDEBUG_PRINT(LMIC.dataLen);
141 SERIALDEBUG_PRINTLN(F(" bytes of payload"));
142 }
143 // Schedule next transmission
144 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_

→˓send);
145

146 SERIALDEBUG_PRINTLN("going to sleep now ... ");
147 // lmic library sleeps automatically after transmission has been completed
148 for(int i= 0; i < SLEEP_TIME / 16; i++) {
149 Watchdog.sleep(16000); // maximum seems to be 16 seconds
150 SERIALDEBUG_PRINT('.');
151 }
152 if (SLEEP_TIME % 16) {
153 Watchdog.sleep((SLEEP_TIME % 16)*1000);
154 SERIALDEBUG_PRINT('*');
155 }
156 SERIALDEBUG_PRINTLN("... woke up again");
157

158 break;
159 case EV_LOST_TSYNC:
160 SERIALDEBUG_PRINTLN(F("EV_LOST_TSYNC"));
161 break;
162 case EV_RESET:
163 SERIALDEBUG_PRINTLN(F("EV_RESET"));
164 break;
165 case EV_RXCOMPLETE:
166 // data received in ping slot
167 SERIALDEBUG_PRINTLN(F("EV_RXCOMPLETE"));
168 break;
169 case EV_LINK_DEAD:
170 SERIALDEBUG_PRINTLN(F("EV_LINK_DEAD"));
171 break;
172 case EV_LINK_ALIVE:
173 SERIALDEBUG_PRINTLN(F("EV_LINK_ALIVE"));
174 break;
175 default:
176 SERIALDEBUG_PRINTLN(F("Unknown event"));
177 break;

(continues on next page)

2.6. Adafruit M0 LoRa 95

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

178 }
179 }
180

181 void do_send(osjob_t* j){
182 // Check if there is not a current TX/RX job running
183 if (LMIC.opmode & OP_TXRXPEND) {
184 SERIALDEBUG_PRINTLN(F("OP_TXRXPEND, not sending"));
185 } else {
186 // Prepare upstream data transmission at the next possible time.
187

188 float temperature, humidity, measuredvbat;
189 int16_t int16_temperature, int16_humidity, int16_vbat;
190

191 // Start a measurement to update the sensor's internal temperature & humidity
→˓reading

192 SERIALDEBUG_PRINTLN("Start measurement...");
193 temperature = dht.readTemperature();
194 // delay(2000);
195 Watchdog.sleep(2000);
196 // Now read the recently measured temperature (2 secs ago) as Celsius (the

→˓default)
197 temperature = dht.readTemperature();
198 // Read the recently measured humidity (2 secs ago)
199 humidity = dht.readHumidity();
200 SERIALDEBUG_PRINTLN("... finished!");
201

202 // Check if any reads failed and exit early (to try again).
203 if (isnan(humidity) || isnan(temperature)) {
204 SERIALDEBUG_PRINTLN("Failed to read from DHT sensor!");
205 for (int i=0; i<5; i++) {
206 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on by making the

→˓voltage HIGH
207 delay(150);
208 digitalWrite(LED_BUILTIN, LOW); // turn the LED on by making the

→˓voltage HIGH
209 delay(150);
210 }
211 // ok, then wait for another period and try it again
212 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_

→˓send);
213 } else {
214 SERIALDEBUG_PRINT("Humidity: ");
215 SERIALDEBUG_PRINT(humidity);
216 SERIALDEBUG_PRINT(" %\t");
217 SERIALDEBUG_PRINT("Temperature: ");
218 SERIALDEBUG_PRINT(temperature);
219 SERIALDEBUG_PRINT(" *C ");
220

221 int16_temperature = 100*temperature;
222 int16_humidity = 100*humidity;
223 mydata[0] = (byte) (int16_temperature >> 8);
224 mydata[1] = (byte) (int16_temperature & 0x00FF);
225 mydata[2] = (byte) (int16_humidity >> 8);
226 mydata[3] = (byte) (int16_humidity & 0x00FF);
227

228 measuredvbat = analogRead(VBATPIN);
229 measuredvbat *= 2; // we divided by 2, so multiply back

(continues on next page)

96 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

230 measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage
231 measuredvbat /= 1023; // convert to voltage
232 int16_vbat = round(measuredvbat * 100);
233 mydata[4] = (byte) (int16_vbat >> 8);
234 mydata[5] = (byte) (int16_vbat & 0x00FF);
235 SERIALDEBUG_PRINT(" %\t");
236 SERIALDEBUG_PRINT("Battery Voltage: ");
237 SERIALDEBUG_PRINTLN(measuredvbat);
238

239 // LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
240

241 // send the 6 bytes payload to LoRaWAN port 7
242 LMIC_setTxData2(7, mydata, 6, 0);
243 SERIALDEBUG_PRINTLN(F("Packet queued"));
244 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on by making the

→˓voltage HIGH
245 }
246

247 // LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
248 // Serial.println(F("Packet queued"));
249 }
250 // Next TX is scheduled after TX_COMPLETE event.
251 }
252

253 void setup() {
254 delay(5000);
255

256 pinMode(LED_BUILTIN, OUTPUT);
257 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
258

259 #ifdef SERIALDEBUG
260 Serial.begin(115200);
261 // while (!Serial);
262 #endif
263

264 dht.begin();
265

266 SERIALDEBUG_PRINTLN(F("Starting"));
267

268 #ifdef VCC_ENABLE
269 // For Pinoccio Scout boards
270 pinMode(VCC_ENABLE, OUTPUT);
271 digitalWrite(VCC_ENABLE, HIGH);
272 delay(1000);
273 #endif
274

275 // LMIC init
276 os_init();
277 // Reset the MAC state. Session and pending data transfers will be discarded.
278 LMIC_reset();
279 LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
280

281 // Set static session parameters. Instead of dynamically establishing a session
282 // by joining the network, precomputed session parameters are be provided.
283 #ifdef PROGMEM
284 // On AVR, these values are stored in flash and only copied to RAM
285 // once. Copy them to a temporary buffer here, LMIC_setSession will

(continues on next page)

2.6. Adafruit M0 LoRa 97

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

286 // copy them into a buffer of its own again.
287 uint8_t appskey[sizeof(APPSKEY)];
288 uint8_t nwkskey[sizeof(NWKSKEY)];
289 memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
290 memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
291 LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
292 #else
293 // If not running an AVR with PROGMEM, just use the arrays directly
294 LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
295 #endif
296

297 #if defined(CFG_eu868)
298 // Set up the channels used by the Things Network, which corresponds
299 // to the defaults of most gateways. Without this, only three base
300 // channels from the LoRaWAN specification are used, which certainly
301 // works, so it is good for debugging, but can overload those
302 // frequencies, so be sure to configure the full frequency range of
303 // your network here (unless your network autoconfigures them).
304 // Setting up channels should happen after LMIC_setSession, as that
305 // configures the minimal channel set.
306 // NA-US channels 0-71 are configured automatically
307 LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
308 LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);

→˓// g-band
309 LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
310 LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
311 LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
312 LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
313 LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
314 LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
315 LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI);

→˓// g2-band
316 // TTN defines an additional channel at 869.525Mhz using SF9 for class B
317 // devices' ping slots. LMIC does not have an easy way to define set this
318 // frequency and support for class B is spotty and untested, so this
319 // frequency is not configured here.
320 #elif defined(CFG_us915)
321 // NA-US channels 0-71 are configured automatically
322 // but only one group of 8 should (a subband) should be active
323 // TTN recommends the second sub band, 1 in a zero based count.
324 // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.

→˓json
325 LMIC_selectSubBand(1);
326 #endif
327

328 // Disable link check validation
329 LMIC_setLinkCheckMode(0);
330

331 // TTN uses SF9 for its RX2 window.
332 LMIC.dn2Dr = DR_SF9;

(continues on next page)

98 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

333

334 // Set data rate and transmit power for uplink (note: txpow seems to be ignored
→˓by the library)

335 LMIC_setDrTxpow(DR_SF7,14);
336

337 // Start job
338 do_send(&sendjob);
339 }
340

341 void loop() {
342 os_runloop_once();
343 }

Listing 23: TTN payload decoder for Adafruit M0 LoRa sensor node

1 function Decoder (bytes, port) {
2 var result = {};
3 var transformers = {};
4

5 if (port==7) {
6 transformers = {
7 'temperature': function transform (bytes) {
8 value=bytes[0]*256 + bytes[1];
9 if (value>=32768) value=value-65536;

10 return value/100.0;
11 },
12 'humidity': function transform (bytes) {
13 return (bytes[0]*256 + bytes[1])/100.0;
14 },
15 'vbattery': function transform (bytes) {
16 return (bytes[0]*256 + bytes[1])/100.0;
17 },
18 }
19

20 result['temperature'] = {
21 value: transformers['temperature'](bytes.slice(0, 2)),
22 uom: 'Celsius',
23 }
24

25 result['humidity'] = {
26 value: transformers['humidity'](bytes.slice(2, 4)),
27 uom: 'Percent',
28 }
29

30 result['vbattery'] = {
31 value: transformers['vbattery'](bytes.slice(4, 6)),
32 uom: 'Volt',
33 }
34 }
35

36 return result;
37 }

2.6. Adafruit M0 LoRa 99

TUM-GIS Sensor Nodes, Release v0.0.1

2.6.5 References

• Adafruit Feather M0 LoRa microntroller

• Adafruit Feather M0 LoRa tutorial

• IBM LMIC (LoraMAC-in-C) library for Arduino

• Adafruit feather m0 lora 900 end-to-end instructions - End Devices (Nodes) - The Things Network

• Getting Started with AdaFruit Feather M0 LoRa - Telenor Start IoT

• GitHub - mcci-catena/arduino-lorawan: User-friendly library for using Feather M0 LoRa with The Things Net-
work and LoRaWAN™

• GitHub - marcuscbehrens/loralife: source code associated with https://www.meetup.com/Internet-of-Things-
IoT-LoRaWan-Infrastruktur-4-RheinNeckar/

• Workshop — LoRaTAS

• mikenz/Feather_M0_LoRa: Example Arduino code of using an Adafruit Feather M0 LoRa module to send
sensor data

• TTN Ulm - LoRaWAN und LoRa in Ulm | Verkehrszählung mit LoRaWAN und TTN

On battery saving / using the deep sleep mode

• Full Arduino Mini LoraWAN and 1.3uA Sleep Mode - End Devices (Nodes) - The Things Network

• Adding Method to Adjust hal_ticks Upon Waking Up from Sleep · Issue #109 · matthijskooijman/arduino-lmic

• minilora-test/minilora-test.ino at cbe686826bd84fac8381de47b5f5b02dd47c2ca0 · tkerby/minilora-test

2.7 Dragino LoRa Arduino Shield

This tutorial is made to showcase the use of Dragino LoRa Arduino board to create a LoRaWAN enabled sensor node.
In the following example, a temperature and humidity sensor was used with the Dragino LoRa board.

2.7.1 Hardware

Microcontroller

The employed microcontroller board is an Arduino Uno R3 variant (i.e. it is a cheap clone of the Arduino Uno R3).
It is operated by the 8bit ATmega328 microcontroller running at 16MHz. It has 32 KB flash memory (to store the
program code), 1 KB EEPROM (to store configuration data), and 2 KB of RAM (to store variables, status information,
and buffers). The operating voltage of the board is 5V (this is important when attaching sensors and other peripherals;
they also must operate on 5V). The board offers 20 general purpose digital input/output pins (20 GPIOs) of which
6 can be used as analog input pins (with 10bit analog digital converters (ADC)) and 6 as PWM outputs, one serial
port (programmable Universal Asynchronous Receiver and Transmitter, UART), one I2C port, one SPI port, one USB
port (which is attached to a USB/Serial converter that is connected to the hardware serial port). Arduino Uno R3
compatible boards are available in German shops from around 5 C to 10 C. The original Arduino Uno R3 board costs
around 22 C.

The Dragino LoRa/GPS Shield runs on 5V and is directly attached to the connectors of the Arduino Uno R3 microcon-
troller board. It comes with a built-in LoRa transmitter and receiver chip SX1276 from the company Semtech that is
dedicated to the 868 MHz frequency band. The SX1276 module is connected via SPI interface to the microcontroller.
For that purpose, Lora CLK, Lora D0, and Lora DI must be jumpered to SCK, MISO, and MOSI respectively (on the
left side of the Dragino shield when looking on the top side of the shield with the Antenna connectors showing to the

100 Chapter 2. Contents

https://www.adafruit.com/product/3178
https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module
https://github.com/matthijskooijman/arduino-lmic
https://www.thethingsnetwork.org/forum/t/adafruit-feather-m0-lora-900-end-to-end-instructions/10759
https://startiot.telenor.com/learning/getting-started-with-adafruit-feather-m0-lora/
https://github.com/mcci-catena/arduino-lorawan
https://github.com/mcci-catena/arduino-lorawan
https://github.com/marcuscbehrens/loralife
https://github.com/marcuscbehrens/loralife
https://www.loratas.io/blog/2017/11/30/workshop
https://github.com/mikenz/Feather_M0_LoRa
https://github.com/mikenz/Feather_M0_LoRa
https://lora.ulm-digital.com/documentation/traffic
https://www.thethingsnetwork.org/forum/t/full-arduino-mini-lorawan-below-1ua-sleep-mode/8059/97
https://github.com/matthijskooijman/arduino-lmic/issues/109
https://github.com/tkerby/minilora-test/blob/cbe686826bd84fac8381de47b5f5b02dd47c2ca0/minilora-test/minilora-test.ino#L190
https://store.arduino.cc/arduino-uno-rev3
http://wiki.dragino.com/index.php?title=Lora/GPS_Shield

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 21: LoRa/GPS Shield from Dragino. LoRa/GPS Shield Wiki with explanations, datasheets, and examples.

2.7. Dragino LoRa Arduino Shield 101

http://www.dragino.com/products/lora/item/108-lora-gps-shield.html
http://wiki.dragino.com/index.php?title=Lora/GPS_Shield

TUM-GIS Sensor Nodes, Release v0.0.1

right). Lora DIO1 and Lora DIO2 must be jumpered to Arduino Digital Pin 6 and Pin 7 respectively. Since the mod-
ule only implements the LoRa physical layer, the LoRaWAN protocol stack must be implemented in software on the
microcontroller. We are using the Arduino library LMIC for that purpose (see below). The implemented LoRaWAN
functionality is compatible with LoRaWAN Class A/C.

The board also contains a Quectel L80 GPS module (based on the MTK MT3339 GPS receiver) with a built-in antenna.
According to the Dragino Wiki “this GPS module can calculate and predict orbits automatically using the ephemeris
data (up to 3 days) stored in internal flash memory, so the shield can fix position quickly even at indoor signal levels
with low power consumption”. The GPS module has a serial UART interface that can be connected in different ways
to the Arduino microcontroller. The default data transmission rate is 9600 baud, the default position reporting rate is
1s (1 Hz). The module is capable to report up to 10 positions per second (10 Hz). Supported protocols are NMEA
0183 and MediaTek PMTK. Note that the ATmega328 microcontroller has only one hardware serial UART interface
and this is already connected via a USB/Serial converter to the USB port of the Arduino board. In order to attach the
serial interface of the GPS module to the microcontroller two general purpose IO lines (GPIOs) are being used and the
serial protocol is implemented in software. The GPS_RXD pin on the Dragino Shield must be connected to Arduino
Digital Pin 4 and the GPS_TXD pin to Digital Pin 3 using two wires. No jumpers must be present for GPS_RXD
and GPS_TXD (besides the two wires mentioned above to Digital Pins 4 and 3). The Dragino LoRa/GPS Shield is
available in German shops for around 34 C to 40 C.

Fig. 22: Solar Charger Shield V2.2 from Seeedstudio.

Since the Arduino Uno R3 board normally has to be powered externally via the USB port or the power connector,
we have added the Solar Charger Shield V2.2 from the company Seeedstudio. This shield is directly attached to the
connectors of the Arduino Uno R3 microcontroller board and sits in-between the Arduino board (bottom) and the
LoRa/GPS Shield (top). A lithium polymer LiPo battery with 3.7V can be attached to the shield. The 3.7V of the
battery is transformed to 5V as required by the Arduino microcontroller board. The battery is automatically recharged
when the Arduino board is powered externally (over USB or the power connector). Also a photovoltaic panel with
4.8-6V can be attached to the shield to recharge the battery. The Solar Charger Shield V2.2 can report the current
battery voltage level. For that purpose we had to solder a bridge on the shield at the connector marked as ‘R7’. Over

102 Chapter 2. Contents

https://www.quectel.com/product/l80.htm
https://en.wikipedia.org/wiki/NMEA_0183
https://en.wikipedia.org/wiki/NMEA_0183
https://cdn.sparkfun.com/assets/parts/1/2/2/8/0/PMTK_Packet_User_Manual.pdf
http://www.dragino.com/products/lora/item/108-lora-gps-shield.html
http://wiki.seeedstudio.com/Solar_Charger_Shield_V2.2/

TUM-GIS Sensor Nodes, Release v0.0.1

a voltage divider the battery anode is connected to Analog Pin A0 and can be queried using the built-in analog/digital
converter. The Solar Charger Shield V2.2 is available in German shops for around 12 C to 18 C.

Sensor

We have attached a DHT22 sensor to the microcontroller board, which measures air temperature and humidity. The
minimal time interval between two measurements is 2 seconds. All data transfers between the DHT22 and the mi-
crocontroller use a single digital line. The sensor data pin is attached to a GPIO pin (here: Digital Pin 5) of the
microcontroller. In addition, a so-called pull-up resistor of 4.7k to 10k Ohm must be connected between the data line
and VCC (+3.3V). The DHT22 datasheet provides more technical details about the DHT22 Sensor. A tutorial on how
to use the DHT22 sensor with Arduino microcontrollers is provided here. The sensor is available in German shops for
around 4 C to 10 C.

Fig. 23: The Arduino Uno R3 (bottom) with attached Solar Charger Shield and a 2000 mAh lithium polymer LiPo
battery (middle), the Dragino LoRa/GPS Shield with attached antenna (top), and an attached DHT22 temperature /
humidity sensor (white box on the left).

2.7. Dragino LoRa Arduino Shield 103

https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://learn.adafruit.com/dht?view=all

TUM-GIS Sensor Nodes, Release v0.0.1

2.7.2 Software

The sensor node has been programmed using the Arduino IDE. Please note, that in the Arduino framework a program
is called a ‘Sketch’.

After the sketch has successfully established a connection to The Things Network it reports the air temperature,
humidity, and the voltage of a (possibly) attached LiPo battery every 5 minutes. All three values are being encoded in
two byte integer values each (in most significant byte order) and then sent as a 6 bytes data packet to the respective
TTN application using LoRaWAN port 7. Please note, that LoRaWAN messages can be addressed to ports 1-255 (port
0 is reserved); these ports are similar to port numbers 0-65535 when using the Internet TCP/IP protocol. Voltage and
humidity values are always greater or equal to 0, but the temperature value can also become negative. Negative values
are represented as a two’s complement; this must be considered in the Payload Decoding Function used in The Things
Network (see this section).

The next eight bytes contain two 32 bit integer values (MSB) for latitude and longitude . In order to a) provide
enough precision and b) avoid negative values, the original angles (given as decimal fractions) are first added with
an offset (90.0 degrees for the latitude and 180.0 degrees for the longitude) and then multiplied by 1,000,000. These
transformations have to be reverted in the Payload Decoding Function. The next two bytes represent a 16 bit integer
value for the altitude (MSB). The next byte contains the current number of satellites seen by the GPS receiver. Note
that only when this number is greater or equal to 4 the provided GPS position is a current one. Finally, the last two
bytes contain a 16 bit integer value (MSB) for the battery voltage in centivolts (this value will be divided by 100 in the
Payload Decoding Function to provide volts). The entire data packet is sent to the respective TTN application using
LoRaWAN port 9. Please note, that LoRaWAN messages can be addressed to ports 1-255 (port 0 is reserved); these
ports are similar to port numbers 0-65535 when using the Internet TCP/IP protocol.

Currently we are not making use of the sleep mode, because we have to find out how to deal with the GPS receiver
in conjunction with deep sleep mode. This means that the board is constantly drawing a significant amount of power
reducing battery life considerably. Using the current sketch the sensor node can operate roughly 6 hours on battery
power before it has to be recharged. Besides software improvements there are also other possibilities to reduce power
consumption: the Arduino board and the Dragino LoRa/GPS Shield have power LEDs which are constantly lit during
operation. Furthermore, the Dragino LoRa/GPS Shield has an indicator LED that blinks when the GPS module is
successfully receiving position fixes. These LEDs could be desoldered to reduce the energy consumption of the sensor
node.

The employed SX1276 LoRa module on the Dragino LoRa/GPS shield does not provide built-in support of the Lo-
RaWAN protocol. Thus, it has to be implemented on the ATmega328 microcontroller. We use the IBM LMIC
(LoraMAC-in-C) library for Arduino, which can be downloaded from this repository. Since the ATmega328 mi-
crocontroller only has 32 KB of flash memory and the LMIC library is taking most of it, there is only very limited
code space left for the application dealing with the sensors (about 2 KB). Nevertheless, this is sufficient to query some
sensors like in our example the DHT22 and to decode the GPS data. The source code is given in the following section:
Arduino Sketch for Dragino LoRa sensor node

2.7.3 Services

The services used for this sensor-node are:

• TheThingsNetwork service for LoRaWAN network service.

• TheThingNetwork- OGC SensorWeb Integration

Registration of the sensor node with The Things Network (TTN)

The LoRaWAN protocol makes use of a number of different identifiers, addresses, keys, etc. These are required to
unambiguously identify devices, applications, as well as to encrypt and decrypt messages. The names and meanings
are nicely explained on a dedicated TTN web page.

104 Chapter 2. Contents

https://www.arduino.cc/en/main/software
https://en.wikipedia.org/wiki/Two%27s_complement
https://github.com/matthijskooijman/arduino-lmic
https://www.thethingsnetwork.org/docs/lorawan/addressing.html

TUM-GIS Sensor Nodes, Release v0.0.1

The sketch given above connects the sensor node with The Things Network (TTN) using the Activation-by-
Personalisation (ABP) mode. In this mode, the required keys for data encryption and session management are created
manually using the TTN console window and must be pasted into the source code of the sketch below. In order to get
this running, you will need to create a new device in the TTN console window. This assumes that you already have a
TTN user account (which needs to be created otherwise). In the settings menu of the newly created device the ABP
mode must be selected and the settings must be saved. Then copy the DevAddr, the NwkSKey, and in the AppSKey
from the TTN console web page of the newly registered device and paste them into the proper places in the sketch
above. Please make sure that you choose for each of the three keys the correct byte ordering (MSB for all three keys).
A detailed explanation of these steps is given here. Then the sketch can be compiled and uploaded to the Arduino Uno
R3 microcontroller.

Important hint: everytime the sensor node is reset or being started again, make sure to reset the frame counter of
the registered sensor in the TTN console web page of the registered device. The reason is that in LoRaWAN all
transmitted data packets have a frame counter, which is incremented after each data frame being sent. This way a
LoRaWAN application can avoid receiving and using the same packet again (replay attack). When TTN receives a
data packet, it checks if the frame number is higher than the last one received before. If not, the received packet is
considered to be old or a replay attack and is discarded. When the sensor node is reset or being started again, its
frame counter is also reset to 0, hence, the TTN application assumes that all new packages are old, because their frame
counter is lower than the last frame received (before the reset). A manual frame counter reset is only necessary when
registering the node using ABP mode. In OTAA mode the frame counter is automatically reset in the sensor node and
the TTN network server.

TTN Payload Decoding

Everytime a data packet is received by a TTN application a dedicated Javascript function is being called (TTN payload
decoder for Dragino LoRa sensor node). This function can be used to decode the received byte string and to create
proper Javascript objects or values that can directly be read by humans when looking at the incoming data packet.
This is also useful to format the data in a specific way that can then be forwarded to an external application (e.g. a
sensor data platform like MyDevices or Thingspeak). Such a forwarding can be configured in the TTN console in the
“Integrations” tab. The Payload Decoder Function given below checks if a packet was received on LoRaWAN port 9
and then assumes that it consists of the 17 bytes encoded as described above. It creates the seven Javascript objects
‘temperature’, ‘humidity’, ‘lat’, ‘lon’, ‘altitude’, ‘sat’, and ‘vbattery’. Each object has two fields: ‘value’ holds the
value and ‘uom’ gives the unit of measure. The source code can simply be copied and pasted into the ‘decoder’ tab in
the TTN console after having selected the application. Choose the option ‘Custom’ in the ‘Payload Format’ field. Note
that when you also want to handle other sensor nodes sending packets on different LoRaWAN ports, then the Payload
Decoder Function can be extended after the end of the if (port==9) {. . . } statement by adding else if (port==7) {. . . }
else if (port==8) {. . . } etc.

The Things Network - OGC SensorWeb Integration

The presented Payload Decoder Function works also with the TTN-OGC SWE Integration for the 52° North Sensor
Observation Service (SOS). This software component can be downloaded from this repository. It connects a TTN
application with a running transactional Sensor Observation Service 2.0.0 (SOS). Data packets received from TTN are
imported into the SOS. The SOS persistently stores sensor data from an arbitrary number of sensor nodes and can be
queried for the most recent as well as for historic sensor data readings. The 52° North SOS comes with its own REST
API and a nice web client allowing to browse the stored sensor data in a convenient way.

We are running an instance of the 52° North SOS and the TTN-OGC SWE Integration. The web client for this
LoRaWAN sensor node can be accessed on this page. Here is a screenshot showing the webclient:

2.7.4 Code files

2.7. Dragino LoRa Arduino Shield 105

https://www.thethingsnetwork.org/docs/devices/registration.html
https://learn.adafruit.com/the-things-network-for-feather?view=all
https://mydevices.com/
https://thingspeak.com/
https://github.com/52North/SOS
https://github.com/52North/SOS
https://github.com/52North/ttn-ogcswe-integration
https://www.opengeospatial.org/standards/sos
http://129.187.38.201:8080/ttn-sos-integration/static/client/helgoland/index.html#/diagram?ts=ttnOGC__13,ttnOGC__15,ttnOGC__14,ttnOGC__17,ttnOGC__18,ttnOGC__12,ttnOGC__19

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 24: Web client for data visualization

Listing 24: Arduino Sketch for Dragino LoRa sensor node

1 /***
2 * Arduino Sketch for a LoRaWAN sensor node that is registered with
3 * 'The Things Network' (TTN) www.thethingsnetwork.org
4 *
5 * Author: Thomas H. Kolbe, thomas.kolbe@tum.de
6 * Version: 0.4
7 * Last update: 2018-11-28
8 *
9 * The sensor node is based on the Arduino Uno3 microcontroller board

10 * and the Dragino Lora Shield with GPS receiver. Also a Seeedstudio
11 * Solar Charger Shield V2.2 is connected to provide a battery power
12 * supply with the possibility to use a small PV panel for recharging.
13 * See https://wiki.dragino.com/index.php?title=Lora/GPS_Shield
14 * and http://wiki.seeedstudio.com/Solar_Charger_Shield_V2.2/
15 *
16 * The sensor node uses a DHT22 sensor measuring air temperature and humidity.
17 * The GPS receiver of the Dragino Lora Shield is used to locate the node.
18 * The voltage of an attached LiPo battery is monitored and sent as an
19 * additional observation.
20 *
21 * All three values are encoded as 2 byte integer values each.
22 * Hence, the total message payload is 6 bytes. Before the values are converted
23 * to integers they are multiplied by 100 to preserve 2 digits after the decimal
24 * point. Thus, the received values must be divided by 100 to obtain the measured
25 * values. The payload is sent every 60s to LoRaWAN port 9. The following
26 * Javascript function can be used as a payload decoding function in TTN:

(continues on next page)

106 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

27 *
28 * function Decoder(bytes, port) {
29 * // Decode an uplink message from a buffer
30 * // (array) of bytes to an object of fields.
31 * if (port==7) {
32 * var decoded = {
33 * "temperature": (bytes[0] << 8 | bytes[1]) / 100.0,
34 * "humidity": (bytes[2] << 8 | bytes[3]) / 100.0,
35 * "vbattery": (bytes[4] << 8 | bytes[5]) / 100.0
36 * };
37 * } else {
38 * var decoded = null;
39 * }
40 * return decoded;
41 * }
42 *
43 * In between two data transmissions the microcontroller board can go
44 * into sleep mode to reduce energy consumption for extended operation
45 * time when running on battery. Usage of the sleep mode must be
46 * explicitly configured below.
47 *
48 * Important hint: everytime the sensor node is reset or being started again,
49 * make sure to reset the frame counter of the registered sensor in the
50 * TTN console at https://console.thethingsnetwork.org. The reason is that
51 * in LoRaWAN all transmitted packets have a frame counter, which is
52 * incremented after each data frame being sent. This way a LoRaWAN application
53 * can avoid receiving and using the same packet again (replay attack). When
54 * TTN receives a data packet, it checks if the frame number is higher than
55 * the last one received before. If not, the received packet is considered
56 * to be old or a replay attack and is discarded. When the sensor node is
57 * reset or being started again, its frame counter is also reset to 0, hence,
58 * the TTN application assumes that all new packages are old, because their
59 * frame counter is lower than the last frame received (before the reset).
60 *
61 * Note, that the DHT22 data pin must be connected to Digital Pin 5 of the
62 * Arduino board. A resistor of 4.7k - 10k Ohm must be connected to
63 * the data pin and VCC (+5V). The GPS_RXD pin on the Dragiono Shield must
64 * be connected to Arduino Digital Pin 4 and the GPS_TXD pin to Digital Pin 3.
65 * Lora CLK, Lora D0, and Lora DI must be jumpered to SCK, MISO, and MOSI
66 * respectively (on the left side of the Dragino shield when looking on the
67 * top side of the shield with the Antenna connectors shwoing to the right).
68 * Lora DIO1 and Lora DIO2 must be jumpered to Arduino Digital Pin 6 and
69 * Pin 7 respectively. No jumpers must be present for GPS_RXD and GPS_TXD
70 * (besides the two wires mentioned above to Digital Pins 4 and 3).
71 *
72 * The code is based on the Open Source library LMIC implementing the LoRaWAN
73 * protocol stack on top of a given LoRa transceiver module (here: RFM95 from
74 * HopeRF, which uses the Semtech SX1276 LoRa chip). The library is originally
75 * being developed by IBM and has been ported to the Arduino platform. See
76 * notes below from the original developers.
77 *
78 ***
79 * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
80 *
81 * Permission is hereby granted, free of charge, to anyone
82 * obtaining a copy of this document and accompanying files,
83 * to do whatever they want with them without any restriction,

(continues on next page)

2.7. Dragino LoRa Arduino Shield 107

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

84 * including, but not limited to, copying, modification and redistribution.
85 * NO WARRANTY OF ANY KIND IS PROVIDED.
86 *
87 * This uses ABP (Activation-by-personalisation), where a DevAddr and
88 * Session keys are preconfigured (unlike OTAA, where a DevEUI and
89 * application key is configured, while the DevAddr and session keys are
90 * assigned/generated in the over-the-air-activation procedure).
91 *
92 * Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
93 * g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
94 * violated by this sketch when left running for longer)!
95 *
96 * To use this sketch, first register your application and device with
97 * the things network, to set or generate a DevAddr, NwkSKey and
98 * AppSKey. Each device should have their own unique values for these
99 * fields.

100 *
101 * Do not forget to define the radio type correctly in config.h.
102 *
103 ***/
104

105 // If the following line is uncommented, messages are being printed out to the
106 // serial connection for debugging purposes. When using the Arduino Integrated
107 // Development Environment (Arduino IDE), these messages are displayed in the
108 // Serial Monitor selecting the proper port and a baudrate of 115200.
109

110 // #define SERIALDEBUG
111

112 #ifdef SERIALDEBUG
113 #define SERIALDEBUG_PRINT(...) Serial.print(__VA_ARGS__)
114 #define SERIALDEBUG_PRINTLN(...) Serial.println(__VA_ARGS__)
115 #else
116 #define SERIALDEBUG_PRINT(...)
117 #define SERIALDEBUG_PRINTLN(...)
118 #endif
119

120 // If the following line is uncommented, the sensor node goes into sleep mode
121 // in between two data transmissions. Also the 2secs time between the
122 // initialization of the DHT22 sensor and the reading of the observations
123 // is spent in sleep mode.
124 // Note, that on the Adafruit Feather 32u4 LoRa board the Serial connection
125 // gets lost as soon as the board goes into sleep mode, and it will not be
126 // established again. Thus, the definition of SERIALDEBUG should be commented
127 // out above when using sleep mode with this board.
128

129 // #define SLEEPMODE
130

131 #ifdef SLEEPMODE
132 #include <Adafruit_SleepyDog.h>
133 #endif
134

135 #include <lmic.h>
136 #include <hal/hal.h>
137 #include <SPI.h>
138

139 #include <DHT.h>
140 #define DHTPIN 5 // Arduino Digital Pin which is connected to the

→˓DHT sensor for Arduino. (continues on next page)

108 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

141 #define DHTTYPE DHT22 // DHT 22 (AM2302)
142 DHT dht(DHTPIN, DHTTYPE); // create the sensor object
143

144 #include <TinyGPS.h>
145 TinyGPS gps;
146 bool newGPSdata = false;
147

148 #include <SoftwareSerial.h>
149 SoftwareSerial SWSerial(3, 4);
150

151 #define VBATPIN A0 // battery voltage is measured from Analog Input A0
→˓for Seeed Solar Shield V2.2

152

153 // The following three constants (NwkSKey, AppSKey, DevAddr) must be changed
154 // for every new sensor node. We are using the LoRaWAN ABP mode (activation by
155 // personalisation) which means that each sensor node must be manually registered
156 // in the TTN console at https://console.thethingsnetwork.org before it can be
157 // started. In the TTN console create a new device and choose ABP mode in the
158 // settings of the newly created device. Then, let TTN generate the NwkSKey and
159 // and the AppSKey and copy them (together with the device address) from the webpage
160 // and paste them below.
161

162 // LoRaWAN NwkSKey, network session key
163 // This should be in big-endian (aka msb).
164 static const PROGMEM u1_t NWKSKEY[16] = {NETWORK_SESSION_KEY_HERE_IN_MSB_FORMAT};
165

166 // LoRaWAN AppSKey, application session key
167 // This should also be in big-endian (aka msb).
168 static const u1_t PROGMEM APPSKEY[16] = {APPLICATION_SESSION_KEY_HERE_IN_MSB_FORMAT};
169

170 // LoRaWAN end-device address (DevAddr)
171 // See http://thethingsnetwork.org/wiki/AddressSpace
172 // The library converts the address to network byte order as needed, so this should

→˓be in big-endian (aka msb) too.
173 static const u4_t DEVADDR = 0x260XXXXX ; // <-- Change this address for every node!
174

175 // These callbacks are only used in over-the-air activation, so they are
176 // left empty here (we cannot leave them out completely unless
177 // DISABLE_JOIN is set in config.h, otherwise the linker will complain).
178 void os_getArtEui (u1_t* buf) { }
179 void os_getDevEui (u1_t* buf) { }
180 void os_getDevKey (u1_t* buf) { }
181

182 // The following array of bytes is a placeholder to contain the message payload
183 // which is transmitted to the LoRaWAN gateway. We are currently only using 6 bytes.
184 // Please make sure to extend the size of the array, if more sensors should be
185 // attached to the sensor node and the message payload becomes larger than 10 bytes.
186 static uint8_t mydata[17] = {0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xE, 0xF, 0x10}

→˓;
187

188 static osjob_t sendjob;
189

190 // Schedule transmission every TX_INTERVAL seconds (might become longer due to duty
191 // cycle limitations). The total interval time is 2secs for the measurement
192 // plus 3secs for the LoRaWAN packet transmission plus TX_INTERVAL_AFTER_SLEEP seconds
193 // plus SLEEP_TIME seconds (microcontroller in sleep mode)
194 const unsigned TX_INTERVAL = 300; // overall cycle time (send one set of

→˓observations every 5 mins) (continues on next page)

2.7. Dragino LoRa Arduino Shield 109

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

195 // const unsigned TX_INTERVAL = 30; // overall cycle time (send one set of
→˓observations every 30 secs)

196 const unsigned TX_TIME = 3; // rough estimate of transmission time of a
→˓single packet

197 const unsigned MEASURE_TIME = 2; // seconds measuring time
198 const unsigned SLEEP_TIME = TX_INTERVAL - TX_TIME - MEASURE_TIME;
199 const unsigned WAIT_TIME = TX_INTERVAL - TX_TIME - MEASURE_TIME;
200

201 // Pin mapping of the LoRa transceiver. Please make sure that DIO1 is connected
202 // to Arduino Digital Pin 6 using an external wire. DIO2 is left unconnected
203 // (it is only required, if FSK modulation instead of LoRa would be used).
204 const lmic_pinmap lmic_pins = {
205 .nss = 10,
206 .rxtx = LMIC_UNUSED_PIN,
207 .rst = 9,
208 .dio = {2, 6, 7},
209 };
210

211 void onEvent (ev_t ev) {
212 SERIALDEBUG_PRINT(os_getTime());
213 SERIALDEBUG_PRINT(": ");
214 switch(ev) {
215 case EV_SCAN_TIMEOUT:
216 SERIALDEBUG_PRINTLN(F("EV_SCAN_TIMEOUT"));
217 break;
218 case EV_BEACON_FOUND:
219 SERIALDEBUG_PRINTLN(F("EV_BEACON_FOUND"));
220 break;
221 case EV_BEACON_MISSED:
222 SERIALDEBUG_PRINTLN(F("EV_BEACON_MISSED"));
223 break;
224 case EV_BEACON_TRACKED:
225 SERIALDEBUG_PRINTLN(F("EV_BEACON_TRACKED"));
226 break;
227 case EV_JOINING:
228 SERIALDEBUG_PRINTLN(F("EV_JOINING"));
229 break;
230 case EV_JOINED:
231 SERIALDEBUG_PRINTLN(F("EV_JOINED"));
232 break;
233 case EV_RFU1:
234 SERIALDEBUG_PRINTLN(F("EV_RFU1"));
235 break;
236 case EV_JOIN_FAILED:
237 SERIALDEBUG_PRINTLN(F("EV_JOIN_FAILED"));
238 break;
239 case EV_REJOIN_FAILED:
240 SERIALDEBUG_PRINTLN(F("EV_REJOIN_FAILED"));
241 break;
242 case EV_TXCOMPLETE:
243 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the

→˓voltage LOW
244 SERIALDEBUG_PRINTLN(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
245 if (LMIC.txrxFlags & TXRX_ACK)
246 SERIALDEBUG_PRINTLN(F("Received ack"));
247 if (LMIC.dataLen) {
248 #ifdef SERIALDEBUG

(continues on next page)

110 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

249 SERIALDEBUG_PRINT(F("Received "));
250 SERIALDEBUG_PRINT(LMIC.dataLen);
251 SERIALDEBUG_PRINT(F(" bytes of payload: 0x"));
252 for (int i=0; i<LMIC.dataLen; i++) {
253 if (LMIC.frame[LMIC.dataBeg + i] < 0x10) {
254 SERIALDEBUG_PRINT(F("0"));
255 }
256 SERIALDEBUG_PRINT(LMIC.frame[LMIC.dataBeg + i], HEX);
257 }
258 SERIALDEBUG_PRINTLN();
259 #endif
260 // add your code to handle a received downlink data packet here
261 }
262

263 #ifdef SLEEPMODE
264 // Schedule next transmission in 1ms second after the board returns from

→˓sleep mode
265 os_setTimedCallback(&sendjob, os_getTime()+ms2osticks(1), do_send);
266

267 SERIALDEBUG_PRINTLN("going to sleep now ... ");
268 // lmic library sleeps automatically after transmission has been completed
269 for(int i= 0; i < SLEEP_TIME / 8; i++) {
270 Watchdog.sleep(8000); // maximum seems to be 8 seconds
271 SERIALDEBUG_PRINT('.');
272 }
273 if (SLEEP_TIME % 8) {
274 Watchdog.sleep((SLEEP_TIME % 8)*1000);
275 SERIALDEBUG_PRINT('*');
276 }
277 SERIALDEBUG_PRINTLN("... woke up again");
278

279 // We need to reset the duty cycle limits within the LMIC library.
280 // The reason is that in sleep mode the Arduino system timers millis and

→˓micros
281 // do not get incremented. However, LMIC monitors the adherence to the
282 // LoRaWAN duty cycle limitations using the system timers millis and

→˓micros.
283 // Since LMIC does not know that we have slept for a long time and duty
284 // cycle requirements in fact are met, we must reset the respective LMIC

→˓timers
285 // in order to prevent the library to wait for some extra time (which

→˓would
286 // not use sleep mode and, thus, would waste battery energy).
287 LMIC.bands[BAND_MILLI].avail = os_getTime();
288 LMIC.bands[BAND_CENTI].avail = os_getTime();
289 LMIC.bands[BAND_DECI].avail = os_getTime();
290 #else
291 // Schedule next transmission
292 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(WAIT_TIME), do_

→˓send);
293 #endif
294 break;
295 case EV_LOST_TSYNC:
296 SERIALDEBUG_PRINTLN(F("EV_LOST_TSYNC"));
297 break;
298 case EV_RESET:
299 SERIALDEBUG_PRINTLN(F("EV_RESET"));

(continues on next page)

2.7. Dragino LoRa Arduino Shield 111

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

300 break;
301 case EV_RXCOMPLETE:
302 // data received in ping slot
303 SERIALDEBUG_PRINTLN(F("EV_RXCOMPLETE"));
304 break;
305 case EV_LINK_DEAD:
306 SERIALDEBUG_PRINTLN(F("EV_LINK_DEAD"));
307 break;
308 case EV_LINK_ALIVE:
309 SERIALDEBUG_PRINTLN(F("EV_LINK_ALIVE"));
310 break;
311 default:
312 SERIALDEBUG_PRINTLN(F("Unknown event"));
313 break;
314 }
315 }
316

317 void do_send(osjob_t* j){
318 // Check if there is not a current TX/RX job running
319 if (LMIC.opmode & OP_TXRXPEND) {
320 SERIALDEBUG_PRINTLN(F("OP_TXRXPEND, not sending"));
321 } else {
322 // Prepare upstream data transmission at the next possible time.
323

324 float temperature, humidity, measuredvbat, lat, lon, alt;
325 int16_t int16_temperature, int16_humidity, int16_vbat, int16_alt;
326 int32_t int32_lat, int32_lon;
327 unsigned long age;
328 byte sat=0;
329

330 // Start a measurement to update the sensor's internal temperature & humidity
→˓reading.

331 // Note, that when fetching measurements from a DHT22 sensor, the reported
332 // values belong to the measurement BEFORE the current measurement.
333 // Therefore, in order to get current observations, we first perform a new

→˓measurement
334 // and wait 2 secs (which is the minimum time between two sensor observations

→˓for
335 // the DHT22) and then directly retrieve the observations again.
336 temperature = dht.readTemperature();
337 // temperature = 23;
338 #ifdef SLEEPMODE
339 Watchdog.sleep(2000);
340 #else
341 delay(2000);
342 #endif
343 // Now read the recently measured temperature (2 secs ago) as Celsius (the

→˓default)
344 temperature = dht.readTemperature();
345 // temperature = 23;
346 // Read the recently measured humidity (2 secs ago)
347 humidity = dht.readHumidity();
348 // humidity = 66;
349

350 // Check if any reads failed and exit early (to try again).
351 if (isnan(humidity) || isnan(temperature)) {
352 SERIALDEBUG_PRINTLN("Failed to read from DHT sensor!");

(continues on next page)

112 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

353 // blink the LED five times to indicate that the sensor values could not
→˓be read

354 for (int i=0; i<5; i++) {
355 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on by making the

→˓voltage HIGH
356 delay(150);
357 digitalWrite(LED_BUILTIN, LOW); // turn the LED on by making the

→˓voltage HIGH
358 delay(150);
359 }
360 // ok, then wait for another period and try it again
361 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_

→˓send);
362 } else {
363 SERIALDEBUG_PRINT("Humidity: ");
364 SERIALDEBUG_PRINT(humidity);
365 SERIALDEBUG_PRINT(" %\t");
366 SERIALDEBUG_PRINT("Temperature: ");
367 SERIALDEBUG_PRINT(temperature);
368 SERIALDEBUG_PRINT(" °C ");
369

370 int16_temperature = round(100.0*temperature);
371 int16_humidity = round(100.0*humidity);
372 mydata[0] = (byte) (int16_temperature >> 8);
373 mydata[1] = (byte) (int16_temperature & 0x00FF);
374 mydata[2] = (byte) (int16_humidity >> 8);
375 mydata[3] = (byte) (int16_humidity & 0x00FF);
376

377 if (newGPSdata) {
378 gps.f_get_position(&lat, &lon, &age);
379 int32_lat = round(1000000.0*(lat+90.0));
380 int32_lon = round(1000000.0*(lon+180.0));
381 alt = gps.f_altitude();
382 int16_alt = round(alt);
383 sat = gps.satellites();
384 mydata[4] = (byte) (int32_lat >> 24);
385 mydata[5] = (byte) ((int32_lat >> 16) & 0x00FF);
386 mydata[6] = (byte) ((int32_lat >> 8) & 0x0000FF);
387 mydata[7] = (byte) (int32_lat & 0x000000FF);
388 mydata[8] = (byte) (int32_lon >> 24);
389 mydata[9] = (byte) ((int32_lon >> 16) & 0x00FF);
390 mydata[10] = (byte) ((int32_lon >> 8) & 0x0000FF);
391 mydata[11] = (byte) (int32_lon & 0x000000FF);
392 mydata[12] = (byte) (int16_alt >> 8);
393 mydata[13] = (byte) (int16_alt & 0x00FF);
394 mydata[14] = sat;
395 } else {
396 mydata[14] = 0;
397 }
398

399 #ifdef VBATPIN
400 measuredvbat = analogRead(VBATPIN);
401 measuredvbat *= 2.0; // we divided by 2, so multiply back
402 measuredvbat *= 5.0; // Multiply by 5V, our reference voltage
403 measuredvbat /= 1023.0; // convert to voltage
404 #else
405 measuredvbat = 0.0;

(continues on next page)

2.7. Dragino LoRa Arduino Shield 113

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

406 #endif
407 int16_vbat = round(measuredvbat * 100.0);
408 mydata[15] = (byte) (int16_vbat >> 8);
409 mydata[16] = (byte) (int16_vbat & 0x00FF);
410 SERIALDEBUG_PRINT(" \t");
411 SERIALDEBUG_PRINT("Battery Voltage: ");
412 SERIALDEBUG_PRINT(measuredvbat);
413 SERIALDEBUG_PRINTLN(" V");
414

415 // Send the 17 bytes payload to LoRaWAN port 9 and do not request an
→˓acknowledgement.

416 // The following call does not directly sends the data, but puts a "send
→˓job"

417 // in the job queue. This job eventually is performed in the call "os_
→˓runloop_once();"

418 // issued repeatedly in the "loop()" method below. After the transmission
→˓is

419 // complete, the EV_TXCOMPLETE event is signaled, which is handled in the
420 // event handler method "onEvent (ev_t ev)" above. In the EV_TXCOMPLETE

→˓branch
421 // then a new call to the "do_send(osjob_t* j)" method is being prepared

→˓for
422 // delayed execution with a waiting time of TX_INTERVAL seconds.
423 LMIC_setTxData2(9, mydata, 17, 0);
424 SERIALDEBUG_PRINTLN(F("Packet queued"));
425 newGPSdata=false;
426 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on by making the

→˓voltage HIGH
427

428 // Next TX is scheduled after TX_COMPLETE event.
429 }
430 }
431 }
432

433 void setup() {
434 delay(5000); // give enough time to open serial monitor (if

→˓needed)
435

436 pinMode(LED_BUILTIN, OUTPUT);
437 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
438

439 #ifdef SERIALDEBUG
440 Serial.begin(115200);
441 // while (!Serial);
442 #endif
443

444 dht.begin(); // initialize DHT22 sensor
445

446 SERIALDEBUG_PRINTLN(F("Starting"));
447

448 #ifdef VCC_ENABLE
449 // For Pinoccio Scout boards
450 pinMode(VCC_ENABLE, OUTPUT);
451 digitalWrite(VCC_ENABLE, HIGH);
452 delay(1000);
453 #endif
454

(continues on next page)

114 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

455 SWSerial.begin(9600);
456

457 // LMIC init
458 os_init();
459 // Reset the MAC state. Session and pending data transfers will be discarded.
460 LMIC_reset();
461 LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
462

463 // Set static session parameters. Instead of dynamically establishing a session
464 // by joining the network, precomputed session parameters are be provided.
465 #ifdef PROGMEM
466 // On AVR, these values are stored in flash and only copied to RAM
467 // once. Copy them to a temporary buffer here, LMIC_setSession will
468 // copy them into a buffer of its own again.
469 uint8_t appskey[sizeof(APPSKEY)];
470 uint8_t nwkskey[sizeof(NWKSKEY)];
471 memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
472 memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
473 LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
474 #else
475 // If not running an AVR with PROGMEM, just use the arrays directly
476 LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
477 #endif
478

479 #if defined(CFG_eu868)
480 // Set up the channels used by the Things Network, which corresponds
481 // to the defaults of most gateways. Without this, only three base
482 // channels from the LoRaWAN specification are used, which certainly
483 // works, so it is good for debugging, but can overload those
484 // frequencies, so be sure to configure the full frequency range of
485 // your network here (unless your network autoconfigures them).
486 // Setting up channels should happen after LMIC_setSession, as that
487 // configures the minimal channel set.
488 // NA-US channels 0-71 are configured automatically
489 LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
490 LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);

→˓// g-band
491 LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
492 LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
493 LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
494 LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
495 LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
496 LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI);

→˓// g-band
497 LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI);

→˓// g2-band
498 // TTN defines an additional channel at 869.525Mhz using SF9 for class B
499 // devices' ping slots. LMIC does not have an easy way to define set this
500 // frequency and support for class B is spotty and untested, so this
501 // frequency is not configured here.
502 #elif defined(CFG_us915)

(continues on next page)

2.7. Dragino LoRa Arduino Shield 115

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

503 // NA-US channels 0-71 are configured automatically
504 // but only one group of 8 should (a subband) should be active
505 // TTN recommends the second sub band, 1 in a zero based count.
506 // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.

→˓json
507 LMIC_selectSubBand(1);
508 #endif
509

510 // Disable link check validation
511 LMIC_setLinkCheckMode(0);
512

513 // TTN uses SF9 for its RX2 window.
514 LMIC.dn2Dr = DR_SF9;
515

516 // Set data rate and transmit power for uplink (note: txpow seems to be ignored
→˓by the library)

517 // LMIC_setDrTxpow(DR_SF7,14);
518 LMIC_setDrTxpow(DR_SF9,14);
519

520 // Start job. This will initiate the repetitive sending of data packets,
521 // because after each data transmission, a delayed call to "do_send()"
522 // is being scheduled again.
523 do_send(&sendjob);
524 }
525

526 void loop() {
527 /*
528 // read from port 1, send to port 0:
529 if (Serial.available()) {
530 int inByte = Serial.read();
531 SWSerial.write(inByte);
532 }
533

534 // read from port 0, send to port 1:
535 if (SWSerial.available()) {
536 int inByte = SWSerial.read();
537 Serial.write(inByte);
538 }
539 */
540 unsigned long chars;
541 unsigned short sentences, failed;
542

543 // For one second we parse GPS data and report some key values
544 // for (unsigned long start = millis(); millis() - start < 1000;)
545 // {
546 while (SWSerial.available())
547 {
548 char c = SWSerial.read();
549 // Serial.write(c); // uncomment this line if you want to see the GPS data

→˓flowing
550 if (gps.encode(c)) // Did a new valid sentence come in?
551 newGPSdata = true;
552 }
553 // }
554

555 /*
556 if (newGPSdata)

(continues on next page)

116 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

557 {
558 float flat, flon;
559 unsigned long age;
560 gps.f_get_position(&flat, &flon, &age);
561 Serial.print("LAT=");
562 Serial.print(flat == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : flat, 6);
563 Serial.print(" LON=");
564 Serial.print(flon == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : flon, 6);
565 Serial.print(" ALT=");
566 Serial.print(gps.f_altitude() == TinyGPS::GPS_INVALID_F_ALTITUDE ? 0.0 : gps.f_

→˓altitude(), 6);
567 Serial.print(" SAT=");
568 Serial.print(gps.satellites() == TinyGPS::GPS_INVALID_SATELLITES ? 0 : gps.

→˓satellites());
569 Serial.print(" PREC=");
570 Serial.print(gps.hdop() == TinyGPS::GPS_INVALID_HDOP ? 0 : gps.hdop());
571 }
572

573 gps.stats(&chars, &sentences, &failed);
574 Serial.print(" CHARS=");
575 Serial.print(chars);
576 Serial.print(" SENTENCES=");
577 Serial.print(sentences);
578 Serial.print(" CSUM ERR=");
579 Serial.println(failed);
580 if (chars == 0)
581 Serial.println("** No characters received from GPS: check wiring **");
582 */
583 os_runloop_once();
584 }

Listing 25: TTN payload decoder for Dragino LoRa sensor node

1 function Decoder(bytes, port) {
2 var result = {};
3 var transformers = {};
4

5 if (port == 9) {
6 transformers = {
7 temperature: function transform(bytes) {
8 value = bytes[0] * 256 + bytes[1];
9 if (value >= 32768) value = value - 65536;

10 return value / 100.0;
11 },
12 humidity: function transform(bytes) {
13 return (bytes[0] * 256 + bytes[1]) / 100.0;
14 },
15 lat: function transform(bytes) {
16 return (
17 (bytes[0] * 16777216 + bytes[1] * 65536 + bytes[2] * 256 + bytes[3]) /
18 1000000.0 -
19 90.0
20);
21 },
22 lon: function transform(bytes) {
23 return (

(continues on next page)

2.7. Dragino LoRa Arduino Shield 117

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

24 (bytes[0] * 16777216 + bytes[1] * 65536 + bytes[2] * 256 + bytes[3]) /
25 1000000.0 -
26 180.0
27);
28 },
29 altitude: function transform(bytes) {
30 return bytes[0] * 256 + bytes[1];
31 },
32 sat: function transform(bytes) {
33 return bytes[0];
34 },
35 vbattery: function transform(bytes) {
36 return (bytes[0] * 256 + bytes[1]) / 100.0;
37 }
38 };
39

40 result["temperature"] = {
41 value: transformers["temperature"](bytes.slice(0, 2)),
42 uom: "Celsius"
43 };
44

45 result["humidity"] = {
46 value: transformers["humidity"](bytes.slice(2, 4)),
47 uom: "Percent"
48 };
49

50 result["lat"] = {
51 value: transformers["lat"](bytes.slice(4, 8)),
52 uom: "Degree"
53 };
54

55 result["lon"] = {
56 value: transformers["lon"](bytes.slice(8, 12)),
57 uom: "Degree"
58 };
59

60 result["altitude"] = {
61 value: transformers["altitude"](bytes.slice(12, 14)),
62 uom: "Meter"
63 };
64

65 result["sat"] = {
66 value: transformers["sat"](bytes.slice(14, 15)),
67 uom: "Count"
68 };
69

70 result["vbattery"] = {
71 value: transformers["vbattery"](bytes.slice(15, 17)),
72 uom: "Volt"
73 };
74

75 return result;
76 }
77 }

118 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

2.7.5 References

• Arduino Uno R3 microcontroller

• FAQ on Arduino microcontrollers from Adafruit

• Dragino Lora/GPS Shield Wiki

• Dragino Lora/GPS Shield github

• Seeedstudio Solar Charger Shield V2.2

• IBM LMIC (LoraMAC-in-C) library for Arduino

• Connect to TTN - Wiki for Dragino Project

• dragino/Arduino-Profile-Examples/Arduino_LMIC.ino GitHub

• dragino/Arduino-Profile-Examples/tinygps_example.ino GitHub

• goodcheney/ttn_mapper/gps_shield at master GitHub

On battery saving / using the deep sleep mode (these are written for other microcontroller boards, but do apply for the
Arduino Uno R3 and the Dragino Lora/GPS Shield, too):

• Adafruit Feather 32u4 LoRa - long transmission time after deep sleep - End Devices (Nodes) - The Things
Network

• Full Arduino Mini LoraWAN and 1.3uA Sleep Mode - End Devices (Nodes) - The Things Network

• Adding Method to Adjust hal_ticks Upon Waking Up from Sleep · Issue #109 · matthijskooijman/arduino-lmic

• minilora-test/minilora-test.ino at cbe686826bd84fac8381de47b5f5b02dd47c2ca0 · tkerby/minilora-test

• Arduino-LMIC library with low power mode - Mario Zwiers

2.8 Pycom LoPy4

This tutorial is made to showcase the use of Pycom LoPy4 board to create a LoRaWAN enabled sensor node. In the
following example, a temperature and humidity sensor was used with the Pycom LoPy4 board.

2.8.1 Hardware

Microcontroller

The Pycom LoPy4 is a microcontroller board offering many radio frequency (RF) connection options, namely LoRa
(and LoRaWAN), SIGFOX, Bluetooth (Classic and Low Energy, BLE), and WiFi. In contrast to most other micro-
controller boards the LoPy4 is programmed in MicroPython, which is a special subset of the Python 3 programming
language and libraries for microcontrollers. The module is operated by the Espressif ESP32 microcontroller board,
which contains a dual-core Xtensa 32bit LX6 processor running with up to 240MHz, 8 MB of flash memory (to store
the program code and some files within a file system), and 520 KB of RAM (to store variables, status information,
and buffers). The ESP32 module also has built-in WiFi and Bluetooth LE connectivity. In addition, the LoPy4 has
4 MB of PSRAM (pseudo static RAM) that is used as a memory extension for the ESP32. The operating voltage of
the board is 3.3V (this is important when attaching sensors and other peripherals; they also must operate on 3.3V).
The board offers 18 general purpose input/output pins (18 GPIOs), from which up to 12 can be used as analog input
pins (with 12bit analog digital converters (ADC)) and two as analog output pins (8bit digital analog converter (DAC)).
Most GPIO pins can be configured for specific hardware protocols. In total 3 serial ports (programmable Universal
Asynchronous Receiver and Transmitter, UART), 2 I2C ports, 3 SPI ports, 1 CAN bus, 1 PWM channel, and an I2S

2.8. Pycom LoPy4 119

https://store.arduino.cc/arduino-uno-rev3
https://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-uno-faq
http://wiki.dragino.com/index.php?title=Lora/GPS_Shield
https://github.com/dragino/Lora/tree/master/Lora%20GPS%20Shield
http://wiki.seeedstudio.com/Solar_Charger_Shield_V2.2/
https://github.com/matthijskooijman/arduino-lmic
http://wiki.dragino.com/index.php?title=Connect_to_TTN#Use_LoRa_GPS_Shield_and_Arduino_as_LoRa_End_Device
https://github.com/dragino/Arduino-Profile-Examples/blob/master/libraries/Dragino/examples/LoRa/LoRaWAN/Arduino_LMIC/Arduino_LMIC.ino
https://github.com/dragino/Arduino-Profile-Examples/blob/master/libraries/Dragino/examples/GPS/tinygps_example/tinygps_example.ino
https://github.com/goodcheney/ttn_mapper/blob/master/gps_shield
https://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/7andhttps://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/13
https://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/7andhttps://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/13
https://www.thethingsnetwork.org/forum/t/full-arduino-mini-lorawan-below-1ua-sleep-mode/8059/97
https://github.com/matthijskooijman/arduino-lmic/issues/109
https://github.com/tkerby/minilora-test/blob/cbe686826bd84fac8381de47b5f5b02dd47c2ca0/minilora-test/minilora-test.ino#L190
https://mariozwiers.de/2018/04/04/arduino-lmic-library-with-low-power-mode/
https://pycom.io/product/lopy4/
https://micropython.org/
https://www.espressif.com/en/products/hardware/esp32/overview

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 25: LoPy4 from Pycom. LoPy4 pinout, documentation, example code.

port can be utilized. The board has a built-in RGB LED that can be programmed by the user. The LoPy4 is available
from the manufacturer for around 35 C.

The LoPy4 needs to be operated on 3.5V – 5.5V put to the VIN pin. The onboard regulator brings it down to 3.3V. The
3.3V pin can only be used as an output. Do not feed 3.3V into this pin as this could damage the regulator. The board
can be programmed over the serial interface, or via WiFi using a telnet or FTP connection. By default, the LoPy4 acts
as a WiFi access point (SSID: lopy4–wlan–XXXX, Password: www.pycom.io) and a user can connect to the module
after joining the WiFi network in order to upload user programs and data files.

A WiFi and Bluetooth antenna is mounted on the LoPy board, but also an external antenna can be connected via an
SMA-type connector. The LoRa or SIGFOX antenna has to be connected via an SMA-type connector. The LoRa
transmitter and receiver is encapsulated within a LoRa module. It uses the LoRa chip SX1276 from the company
Semtech and can be configured to work either in the 433 MHz, 868 MHz, or 915 MHz frequency band. The LoRa
module is connected via SPI interface to the microcontroller and all of the required connections of the LoRa transceiver
pins with the microcontroller are already built-in on the LoPy4 board. Since the module only implements the LoRa
physical layer, the LoRaWAN protocol stack is implemented in software on the microcontroller. The implemented
LoRaWAN functionality is compatible with LoRaWAN Class A/C.

Expansion board 3.0

The LoPy4 can be attached to the Pycom Expansion Board 3.0. The board offers a USB port that is connected
internally via a USB/Serial converter to the default serial port (UART) of the LoPy4. This allows to easily upload
programs and data files to the LoPy4 from a developer computer over USB connection. The expansion board also
comes with a connector for a 3.7V lithium polymer (LiPo) battery with an additional battery charger circuit. When
the expansion board is connected via USB to a developer computer or to an USB charger, an attached battery will be
automatically charged. The battery voltage can be monitored via the LoPy4 analog to digital converter (ADC). The
board also comes with a user LED, a user switch, and a MicroSD card slot to read and write files from the LoPy4, for
example, to log recorded data. The LoPy Epansion Board 3.0 is available from the manufacturer for 16 C.

120 Chapter 2. Contents

https://pycom.io/product/lopy4/
https://docs.pycom.io/datasheets/development/lopy4/
https://pycom.io/product/expansion-board-3-0/

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 26: The Pycom LoPy4 with the Expansion Board 3 (inside the blue case) and an externally attached DHT22
temperature and humidity sensor.

Sensor

We have attached a Grove DHT22 sensor module to the expansion board, which measures air temperature and hu-
midity. The minimal time interval between two measurements is 2 seconds. All data transfers between the DHT22
and the microcontroller use a single digital line. The sensor data pin is attached to a GPIO pin (here: GPIO22) of the
expansion board. The 5V pin of the Grove module is connected to 3V3 of the expansion board, and the GND of the
Grove module to GND of the expansion board. The DHT22 datasheet can be accessed here. The sensor is available in
German shops for around 4 C to 10 C.

2.8.2 Software

The sensor node has been programmed in the MicroPython language. We use Microsoft’s Visual Studio Code platform
with the Pymakr plugin to edit and upload the program. The Pymakr plugin is developed by Pycom and can be used
with either Visual Studio Code or the Atom Text Editor. Both IDEs can be downloaded free of charge; Atom is also
Open Source software. Note that MicroPython programs do not need to be compiled (like Java or C/C++ programs).
The source code is interpreted by the Microcontroller instead.

The source code consists of the following two files. main.py and boot.py. They must be copied into the base folder on
the LoPy4. We use a library for the DHT22 written by Erik de Lange. It can be downloaded from the following link
but is also provided here dht22.py. The library has to be copied into the subdirectory “lib” on the LoPy4.

After the program has successfully established a connection to The Things Network it reports the air temperature,
humidity, and the voltage of an attached LiPo battery every 5 minutes. Since we are running the device on an USB
charger, the program does not check the battery level and the transferred value is always set to 0 V. All three values are
being encoded in two byte integer values each (in most significant byte order) and then sent as a 6 bytes data packet
to the respective TTN application using LoRaWAN port 7. Please note, that LoRaWAN messages can be addressed
to ports 1-255 (port 0 is reserved); these ports are similar to port numbers 0-65535 when using the Internet TCP/IP
protocol. Voltage and humidity values are always greater or equal to 0, but the temperature value can also become
negative. Negative values are represented as a two’s complement ; this must be considered in the Payload Decoding

2.8. Pycom LoPy4 121

https://pycom.io/product/expansion-board-3-0/
http://wiki.seeedstudio.com/Grove-Temperature_and_Humidity_Sensor_Pro/
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://micropython.org/
https://code.visualstudio.com/
https://docs.pycom.io/pymakr/installation/
https://atom.io/
https://github.com/erikdelange/WiPy-2.0-DHT22
https://en.wikipedia.org/wiki/Two%27s_complement

TUM-GIS Sensor Nodes, Release v0.0.1

Function used in The Things Network (see below).

The program as given above does not make use of the deep sleep mode or any other power saving method. In between
two sensor readings the microcontroller is busy ‘doing nothing’ until the waiting time before the next measurement is
over. When the LoPy4 should be operated on battery, the power saving modes of the LoPy4 should be investigated.
Note that this will require to restructure the main.py program significantly.

2.8.3 Services

The services used for this sensor-node are:

• TheThingsNetwork service for LoRaWAN network service.

• TheThingsNetwork - OGC SensorWeb integration for uploading LoRaWAN sensor data into OGC infrastructure.

Registration of the sensor node with The Things Network (TTN)

The LoRaWAN protocol makes use of a number of different identifiers, addresses, keys, etc. These are required to
unambiguously identify devices, applications, as well as to encrypt and decrypt messages. The names and meanings
are nicely explained on a dedicated TTN web page.

The program given above connects the sensor node with The Things Network (TTN) using the Over-the-Air-Activation
(OTAA) mode. In this mode, we use the three keys AppEUI, DevEUI, AppKey. The DevEUI is pre-programmed into
the LoPy4. In order to register the device with TTN, you first need to fetch the DevEUI from the LoPy4 board. This
is explained in the LoPy4 documentation. Each sensor node must be manually registered in the TTN console before
it can be started. This assumes that you already have a TTN user account and have created an application in the user
account (both need to be created otherwise). In the TTN console create a new device using the DevEUI value that was
previously determined. After the registration of the device the two generated keys (AppEUI, AppKey) can be copied
from the TTN console and must be pasted into the the proper places in the source code of the program above. Please
make sure that you choose for both keys the correct byte ordering (all are in MSB, i.e. in the same ordering as given
in the TTN console). A detailed explanation of these steps is given here. Then the program can be uploaded to the
LoPy4 microcontroller. Note that the two constants (AppEUI, AppKey) must be changed in the source code for every
new sensor node (the DevEUI is different for each node anyway).

Using the OTAA mode has the advantage over the ABP (activation by personalization) mode that during connection the
session keys are newly created which improves security. Another advantage is that the packet counter is automatically
reset to 0 both in the node and in the TTN application.

TTN Payload Decoding

Everytime a data packet is received by a TTN application a dedicated Javascript function is being called (Payload
Decoder Function). This function can be used to decode the received byte string and to create proper Javascript
objects or values that can directly be read by humans when looking at the incoming data packet. This is also useful
to format the data in a specific way that can then be forwarded to an external application (e.g. a sensor data platform
like MyDevices or Thingspeak). Such a forwarding can be configured in the TTN console in the “Integrations”
tab. TTN payload decoder given here checks if a packet was received on LoRaWAN port 7 and then assumes that it
consists of the 6 bytes encoded as described above. It creates the three Javascript objects ‘temperature’, ‘humidity’,
and ‘vbattery’. Each object has two fields: ‘value’ holds the value and ‘uom’ gives the unit of measure. The source
code can simply be copied and pasted into the ‘decoder’ tab in the TTN console after having selected the application.
Choose the option ‘Custom’ in the ‘Payload Format’ field. Note that when you also want to handle other sensor nodes
sending packets on different LoRaWAN ports, then the Payload Decoder Function can be extended after the end of the
if (port==7) {. . . } statement by adding else if (port==8) {. . . } else if (port==9) {. . . } etc.

122 Chapter 2. Contents

https://docs.pycom.io/firmwareapi/pycom/machine/#machinedeepsleeptimems
https://www.thethingsnetwork.org/docs/lorawan/address-space.html
https://docs.pycom.io/gettingstarted/registration/lora/ttn.html#register-a-device
https://console.thethingsnetwork.org
https://www.thethingsnetwork.org/docs/devices/registration.html
https://docs.pycom.io/gettingstarted/registration/lora/ttn.html
https://mydevices.com/
https://thingspeak.com/

TUM-GIS Sensor Nodes, Release v0.0.1

The Things Network - OGC SensorWeb Integration

The presented Payload Decoder Function works also with the TTN-OGC SWE Integration for the 52° North Sensor
Observation Service (SOS). This software component can be downloaded from this repository. It connects a TTN
application with a running transactional Sensor Observation Service 2.0.0 (SOS). Data packets received from TTN are
imported into the SOS. The SOS persistently stores sensor data from an arbitrary number of sensor nodes and can be
queried for the most recent as well as for historic sensor data readings. The 52° North SOS comes with its own REST
API and a nice web client allowing to browse the stored sensor data in a convenient way.

We are running an instance of the 52° North SOS and the TTN-OGC SWE Integration. The web client for this
LoRaWAN sensor node can be accessed on this page. Here is a screenshot showing the webclient:

Fig. 27: Web client for data visualization

2.8.4 Code files

Listing 26: boot.py

1 from network import LoRa
2 import socket
3 import time
4 import ubinascii
5 import pycom
6 from machine import Pin
7 import dht22
8

9 # Initialise LoRa in LORAWAN mode.
10 # Please pick the region that matches where you are using the device:
11 # Asia = LoRa.AS923
12 # Australia = LoRa.AU915

(continues on next page)

2.8. Pycom LoPy4 123

https://github.com/52North/SOS
https://github.com/52North/SOS
https://github.com/52North/ttn-ogcswe-integration
https://www.opengeospatial.org/standards/sos
http://129.187.38.201:8080/ttn-sos-integration/static/client/helgoland/index.html#/diagram?ts=ttnOGC__32,ttnOGC__31

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

13 # Europe = LoRa.EU868
14 # United States = LoRa.US915
15 lora = LoRa(mode=LoRa.LORAWAN, region=LoRa.EU868)
16

17 # Create the OTAA authentication parameters:
18 # directly copy the values from the Things Network Console and replace the
19 # xxxx's and yyyy's by these values (do not prepend anything like '0x' or similar)
20 app_eui = ubinascii.unhexlify('xxxxxxxxxxxxxxxx')
21 app_key = ubinascii.unhexlify('yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy')
22

23 print("Initializing DHT22 Sensor... ",end='')
24 dht = dht22.device(Pin.exp_board.G22)
25 print("ready!\n")
26

27 pycom.heartbeat(False)
28 pycom.rgbled(0xFF0000)
29

30 # join a network using OTAA (Over the Air Activation)
31 lora.join(activation=LoRa.OTAA, auth=(app_eui, app_key), timeout=0)
32

33 # wait until the module has joined the network
34 while not lora.has_joined():
35 time.sleep(2.5)
36 print('Not yet joined...')
37

38 pycom.rgbled(0x00FF00)
39 time.sleep(1)
40

41 # create a LoRa socket
42 s = socket.socket(socket.AF_LORA, socket.SOCK_RAW)
43

44 # set the LoRaWAN data rate
45 s.setsockopt(socket.SOL_LORA, socket.SO_DR, 5)
46

47 # set the LoRaWAN port number for transmitted packets
48 s.bind(7)
49

50 pycom.heartbeat(True)

Listing 27: main.py

1 from network import LoRa
2 import socket
3 import time
4 import ubinascii
5 import pycom
6 from machine import Pin
7 import dht22
8

9 while (True):
10 pycom.heartbeat(False)
11 pycom.rgbled(0x800000)
12

13 # start a new measurement (taking 2 seconds) to ensure that the next
14 # retrieval of readings has current values
15 dht.trigger()

(continues on next page)

124 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

16 time.sleep(0.2)
17

18 # now start a 2nd measurements which - according to the DHT22 datasheet -
19 # delivers the measured values from the previous reading
20 hasreading=False
21 numtrials=0
22

23 while(not hasreading):
24 hasreading=dht.trigger()
25 numtrials=numtrials+1
26 if hasreading:
27 print("RH = {}% T = {}C".format(dht.humidity, dht.temperature))
28 else:
29 print(dht.status)
30

31 hum_msb=int(dht.humidity*100/256)
32 hum_lsb=int(dht.humidity*100%256)
33

34 tmp_int=int(dht.temperature*100)
35 # if temperature value is negative, then represent it by its 2's complement (16

→˓bit)
36 if (tmp_int<0):
37 tmp_int=65536+tmp_int
38

39 tmp_msb=int(tmp_int/256)
40 tmp_lsb=int(tmp_int%256)
41 print("RH = {} {} T = {} {}".format(hum_msb, hum_lsb, tmp_msb, tmp_lsb))
42 pycom.rgbled(0x000040)
43

44 # make the socket blocking
45 # (waits for the data to be sent and for the 2 receive windows to expire)
46 s.setblocking(True)
47

48 # send some data
49 s.send(bytes([tmp_msb, tmp_lsb, hum_msb, hum_lsb, 0, 0]))
50

51 # make the socket non-blocking
52 # (because if there's no data received it will block forever...)
53 s.setblocking(False)
54

55 # get any data received (if any...)
56 data = s.recv(64)
57 print(data)
58

59 pycom.heartbeat(True)
60 # wait for such a time period that we have one measurement every 300 seconds
61 time.sleep(300-numtrials*4-3)

Listing 28: dht22.py

1

2 # dht22.py
3 #
4 # Class file for accessing the DHT22 temperature and humidity sensor using a WiPy 2.0.
5 #
6 # 2018 - Erik de Lange

(continues on next page)

2.8. Pycom LoPy4 125

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

7

8 from machine import Pin
9

10 import pycom
11 import time
12

13 class device:
14

15 def __init__(self, pin):
16 self.temperature = None
17 self.humidity = None
18 self.status = "NoConversionStartedError"
19 self.pin = Pin(pin, mode=Pin.OPEN_DRAIN)
20

21 def trigger(self):
22 self.pin(1)
23 time.sleep(2) # enforce two second read interval
24

25 self.pin(0) # send start signal (1ms low).
26 time.sleep_ms(1)
27

28 pulses = pycom.pulses_get(self.pin, 100) # capture communication
29

30 self.pin.init(Pin.OPEN_DRAIN)
31

32 if len(pulses) != 82: # 40 data bit plus one acknowledge expected
33 self.status = "ReadError - received {} only pulses".format(len(pulses))
34 return False
35

36 bits = []
37

38 for level, duration in pulses[1:]:
39 if level == 1:
40 bits.append(0 if duration < 50 else 1) # convert to 0 or 1
41

42 data = []
43

44 for n in range(5):
45 byte = 0
46 for i in range(8): # shift 8 bits into a byte
47 byte <<= 1
48 byte += bits[n * 8 + i]
49 data.append(byte)
50

51 int_rh, dec_rh, int_t, dec_t, csum = data
52

53 if ((int_rh + dec_rh + int_t + dec_t) & 0xFF) != csum:
54 self.status = "Checksum Error"
55 return False
56

57 self.humidity = ((int_rh * 256) + dec_rh) / 10
58 self.temperature = (((int_t & 0x7F) * 256) + dec_t) / 10
59 if (int_t & 0x80) > 0:
60 self.temperature *= -1
61

62 self.status = "OK"
63 return True

(continues on next page)

126 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

64

65

66 if __name__ == "__main__":
67 dht = device(Pin.exp_board.G22)
68

69 for _ in range(5):
70 if dht.trigger() == True:
71 print("RH = {}% T = {}C".format(dht.humidity, dht.temperature))
72 else:
73 print(dht.status)

Listing 29: TTN payload decoder

1 function Decoder (bytes, port) {
2 var result = {};
3 var transformers = {};
4

5 if (port==7) {
6 transformers = {
7 'temperature': function transform (bytes) {
8 value=bytes[0]*256 + bytes[1];
9 if (value>=32768) value=value-65536;

10 return value/100.0;
11 },
12 'humidity': function transform (bytes) {
13 return (bytes[0]*256 + bytes[1])/100.0;
14 },
15 'vbattery': function transform (bytes) {
16 return (bytes[0]*256 + bytes[1])/100.0;
17 },
18 }
19

20 result['temperature'] = {
21 value: transformers['temperature'](bytes.slice(0, 2)),
22 uom: 'Celsius',
23 }
24

25 result['humidity'] = {
26 value: transformers['humidity'](bytes.slice(2, 4)),
27 uom: 'Percent',
28 }
29

30 result['vbattery'] = {
31 value: transformers['vbattery'](bytes.slice(4, 6)),
32 uom: 'Volt',
33 }
34 }
35

36 return result;
37 }

2.8.5 References

• Pycom LoPy4 product homepage

• LoPy4 specification document

2.8. Pycom LoPy4 127

https://pycom.io/product/lopy4/
https://docs.pycom.io/.gitbook/assets/specsheets/Pycom_002_Specsheets_LoPy4_v2.pdf

TUM-GIS Sensor Nodes, Release v0.0.1

• LoPy4 pinout specification

• LoPy4 online documentation (incl. description of software libraries)

• MicroPython language and library reference

• LoPy4 Getting Started (hardware & software setup, installation of Pymakr IDE)

On the Expansion Board 3.0

• Pycom Expansion Board 3.0 product homepage

• Expansion Board 3.0 documentation (pinout, datasheet)

On the DHT22 sensor

• MicroPython library for the DHT22 sensor

• DHT22 datasheet

2.9 Seeeduino LoRaWAN

2.9.1 Hardware

Microcontroller

Fig. 28: Seeeduino LoRaWAN microcontroller from Seeed Studio.

The Seeeduino LoRaWAN module is operated by the 32bit microcontroller ATSAMD21G18 (ARM® Cortex®-M0+)
running at 48MHz. It has 256 KB flash memory (to store the program code) and 32 KB of RAM (to store variables,
status information, and buffers). The operating voltage of the board is 3.3V (this is important when attaching sensors

128 Chapter 2. Contents

https://docs.pycom.io/.gitbook/assets/lopy4-pinout.pdf
https://docs.pycom.io
https://micropython.org
https://docs.pycom.io/gettingstarted/introduction.html
https://pycom.io/product/expansion-board-3-0/
https://docs.pycom.io/datasheets/boards/expansion3
https://github.com/erikdelange/WiPy-2.0-DHT22
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/

TUM-GIS Sensor Nodes, Release v0.0.1

and other peripherals; they also must operate on 3.3V). The board offers 20 general purpose digital input/output
pins (20 GPIOs), 6 analog input pins (with 12bit analog digital converters (ADC)), 1 analog output pin (with 10bit
digital analog converter (DAC)), 2 serial ports (2 programmable Universal Asynchronous Receiver and Transmitters,
UARTs). The board comes with an embedded lithium battery management chip and status indicator led, which allows
to directly connect a 3.7V LiPo rechargeable battery that will be automatically recharged when the board is powered
over its USB connector. The battery voltage level can be queried from analog input A4, the charging status (charging,
full) from analog input A5. The Seeeduino LoRaWAN (without GPS module) is available in German shops for around
37 C.

The LoRa transmitter and receiver is encapsulated within an RHF76-052AM module from the Chinese company
RisingHF. The RF module contains its own microcontroller, which implements the LoRaWAN protocol. The module
is connected via the serial interface to the ATSAMD21G18 microcontroller and can be controlled by sending so-
called ‘AT’ commands. The implemented LoRaWAN functionality is compatible with LoRaWAN Class A/C. The
explanation of all supported commands as well as a number of examples on how to use the Seeeduino LoRaWAN are
given on the Seeeduino LoRaWAN Wiki.

The board has 4 on-board Grove connectors. ‘Grove’ is a framework developed by the company Seeed Studio stan-
dardizing the connectors, operating voltages, and pin configurations for attaching peripherals like sensors, actuators,
and displays to microcontrollers. Note that the Grove modules need to be able to operate (also) on 3.3V (instead of
only with 5V), because the Seeeduino LoRaWAN board only provides 3.3V to the Grove connectors. Important hint:
if you want to use the Grove ports, make sure to include the command “digitalWrite(38, HIGH)” in the setup() routine
of your program. A low level on that pin deactivates the power supply of the four Grove ports.

The board has also the typical Arduino UNO connectors allowing to attach so-called Arduino shields (however, please
note that the shields must be working with 3.3V; the normal operating voltage for the Arduino UNO microcontroller
and its shields is 5V).

Fig. 29: The Seeeduino LoRaWAN GPS microcontroller with a 6600 mAh lithium polymer (LiPo) battery (bottom),
and an attached BME280 temperature / humidity / barometer sensor module.

2.9. Seeeduino LoRaWAN 129

http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
http://wiki.seeedstudio.com/Grove_System/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://marcusjenkins.com/arduino-pinout-diagrams/
https://learn.sparkfun.com/tutorials/arduino-shields
https://www.kuongshun-ks.com/uno/uno-sensor/gy-bme280-3-3-precision-altimeter.html

TUM-GIS Sensor Nodes, Release v0.0.1

Sensor

We attached a Bosch BME280 sensor module to the extension connectors of the microcontroller board using 5 wires.
The employed BME280 sensor board is a cheap no-name product. VCC and GND are connected to 3.3V and GND
of the microcontroller board respectively. SCL and SDA from the sensor board are connected to SCL and SDA of the
microcontroller board. SDO from the sensor board is also connected to GND of the microcontroller; it selects 0x76
as the I2C device address (a high level, i.e. 3.3V, would set the device address to 0x77 - this is relevant, if two sensor
modules should be operated on the same I2C bus). Note that there is also a Seeed Grove BME280 module available
which alternatively can be used and connected to the first I2C Grove connector of the Seeeduino LoRaWAN board.
The BME280 measures temperature in the range -40 - 85 °C, with ±1.0°C accuracy; 0% - 100% relative humidity
with ±3% accuracy; and atmospheric pressure in the range 300 - 1100 hPa (1 hPa= one hundred Pa) with ±1.0 hPa
accuracy. It offers the two interface standards I2C and SPI (we are using I2C here and the default I2C address 0x76).
The atmospheric pressure changes with altitude, hence, the BME280 can also be used to measure the approximate
altitude of a place.

2.9.2 Software

The sensor node has been programmed using the Arduino IDE. Please note, that in the Arduino framework a program
is called a ‘Sketch’.

In order to support the “Seeeduino LoRaWAN” board with the Arduino IDE, make sure to have installed the package
“Seeed SAMD boards by Seeed Studio” in version 1.3.0 using the board manager in the Arduino IDE. This is also
explained on a dedicated webpage from Seeed Studio. The sketch requires the software libraries “RTCZero”, “Ar-
duino_BME280”, “Adafruit_Sensor”, “Wire”, and “LoRaWAN”. The first three have to be installed using the library
manager of the Arduino IDE, the fourth library is already installed with the Arduino IDE and the latter library comes
with the “Seeeduino LoRaWAN” board installation.

After the sketch has successfully established a connection to The Things Network it reports the air temperature, relative
humidity, air pressure, altitude, and the voltage of a (possibly) attached LiPo battery every 5 minutes. All five values
are being encoded in two byte integer values each and then sent as a 10 bytes data packet to the respective TTN
application using LoRaWAN port 33. Please note, that LoRaWAN messages can be addressed to ports 1-255 (port 0 is
reserved); these ports are similar to port numbers 0-65535 when using the Internet TCP/IP protocol. Voltage, pressure,
altitude, and humidity values are always greater or equal to 0, but the temperature value can also become negative.
Negative values are represented as a two’s complement; this must be considered in the Payload Decoding Function
used in The Things Network (see below).

In between two sensor readings the microcontroller, the LoRaWAN module, and the sensor module are going into
deep sleep mode to save battery power. During LoRaWAN data transmission the device draws up to 65mA current.
When in sleep mode the entire node only draws around 0.06 mA power. Hence, with a 6600 mAh 3.7V LiPo battery
and the current version of the sketch the system should be able to run for many years before recharging (not taking
into account the self-discharging rate of the battery).

The source code is provided in the following section Arduino Sketch for Seeeduino LoRaWAN sensor node

2.9.3 Services

The services used for this sensor-node are:

• TheThingsNetwork service for LoRaWAN network service.

• TheThingsNetwork - OGC SensorWeb integration for uploading LoRaWAN sensor data into OGC infrastructure.

130 Chapter 2. Contents

https://www.bosch-sensortec.com/bst/products/all_products/bme280
https://www.kuongshun-ks.com/uno/uno-sensor/gy-bme280-3-3-precision-altimeter.html
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/guide/cores
http://wiki.seeedstudio.com/Seeed_Arduino_Boards/
https://www.arduino.cc/en/Guide/Libraries
https://www.arduino.cc/en/Guide/Libraries
https://en.wikipedia.org/wiki/Two%27s_complement

TUM-GIS Sensor Nodes, Release v0.0.1

Registration of the sensor node with The Things Network (TTN)

The LoRaWAN protocol makes use of a number of different identifiers, addresses, keys, etc. These are required to
unambiguously identify devices, applications, as well as to encrypt and decrypt messages. The names and meanings
are nicely explained on a dedicated TTN web page.

The sketch given above connects the sensor node with The Things Network (TTN) using the Over-the-Air-Activation
(OTAA) mode. In this mode, we use the three keys AppEUI, DevEUI, AppKey. The DevEUI should normally be
delivered with the sensor node by the manufacturer. However, it seems that there is no explicit DevEUI provided with
the Seeeduino LoRaWAN module. Therefore, it has to be generated automatically together with the other two keys
using the TTN console. Each sensor node must be manually registered in the TTN console before it can be started.
This assumes that you already have a TTN user account (which needs to be created otherwise). In the TTN console
create a new device with also the DevEUI being automatically generated. After the registration of the device the
respective keys (AppEUI, DevEUI, AppKey) can be copied from the TTN console and must be pasted into the the
proper places in the source code of the sketch above. Please make sure that you choose for each of the three keys
are in the correct byte ordering (all are in MSB, i.e. in the same ordering as given in the TTN console). A detailed
explanation of these steps is given on this page. Then the sketch can be compiled and uploaded to the Seeeduino
LoRaWAN microcontroller. Note that the three constants (AppEUI, DevEUI, AppKey) must be changed in the source
code for every new sensor node.

Using the OTAA mode has the advantage over the ABP (activation by personalization) mode that during connection the
session keys are newly created which improves security. Another advantage is that the packet counter is automatically
reset to 0 both in the node and in the TTN application.

TTN Payload Decoding

Everytime a data packet is received by a TTN application a dedicated Javascript function is being called (Payload
Decoder Function). This function can be used to decode the received byte string and to create proper Javascript
objects or values that can directly be read by humans when looking at the incoming data packet. This is also useful to
format the data in a specific way that can then be forwarded to an external application (e.g. a sensor data platform like
MyDevices or Thingspeak).

Such a forwarding can be configured in the TTN console in the “Integrations” tab. TTN payload decoder for Seeeduino
LoRaWAN sensor node given here checks if a packet was received on LoRaWAN port 33 and then assumes that it
consists of the 10 bytes encoded as described above. It creates the five Javascript objects ‘temperature’, ‘humidity’,
‘pressure’, ‘altitude’, and ‘vbattery’. Each object has two fields: ‘value’ holds the value and ‘uom’ gives the unit of
measure. The source code can simply be copied and pasted into the ‘decoder’ tab in the TTN console after having
selected the application. Choose the option ‘Custom’ in the ‘Payload Format’ field. Note that when you also want to
handle other sensor nodes sending packets on different LoRaWAN ports, then the Payload Decoder Function can be
extended after the end of the if (port==33) {. . . } statement by adding else if (port==7) {. . . } else if (port==8) {. . . }
etc.

The Things Network - OGC SensorWeb Integration

The presented Payload Decoder Function works also with the TTN-OGC SWE Integration for the 52° North Sensor
Observation Service (SOS). This software component can be downloaded from this repository. It connects a TTN
application with a running transactional Sensor Observation Service 2.0.0 (SOS). Data packets received from TTN are
imported into the SOS. The SOS persistently stores sensor data from an arbitrary number of sensor nodes and can be
queried for the most recent as well as for historic sensor data readings. The 52° North SOS comes with its own REST
API and a nice web client allowing to browse the stored sensor data in a convenient way.

We are running an instance of the 52° North SOS and the TTN-OGC SWE Integration. The web client for this
LoRaWAN sensor node can be accessed on this webpage. Here is a screenshot showing the webclient:

2.9. Seeeduino LoRaWAN 131

https://www.thethingsnetwork.org/docs/lorawan/address-space.html
https://console.thethingsnetwork.org
https://www.thethingsnetwork.org/docs/devices/registration.html
https://learn.adafruit.com/the-things-network-for-feather?view=all
https://mydevices.com/
https://thingspeak.com/
https://github.com/52North/SOS
https://github.com/52North/SOS
https://github.com/52North/ttn-ogcswe-integration
https://www.opengeospatial.org/standards/sos
http://129.187.38.201:8080/ttn-sos-integration/static/client/helgoland/index.html#/diagram?ts=ttnOGC__3,ttnOGC__4,ttnOGC__1,ttnOGC__2,ttnOGC__5

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 30: Web client for data visualization

2.9.4 Code files

Listing 30: Arduino Sketch for Seeeduino LoRaWAN sensor node

1 /***
2 * Arduino Sketch for a LoRaWAN sensor node that is registered with
3 * 'The Things Network' (TTN) www.thethingsnetwork.org
4 *
5 * Filename: Seeeduino_LoRaWAN_GPS_BME280_OTAA_Sleep_Adafruit_V2.ino
6 *
7 * Author: Thomas H. Kolbe, thomas.kolbe@tum.de
8 * Version: 1.0.1
9 * Last update: 2019-04-17

10 *
11 * This sketch works with a Seeeduino LoRaWAN microcontroller board (with or
12 * without embedded GPS module). See http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
13 * It requires a Seeed Grove BME280 air temperature, relative humidity,
14 * and air pressure sensor module attached to the I2C Grove connector of
15 * the microcontroller board. The current configuration assumes that
16 * the BME280 is configured to I2C device address 0x76 (default).
17 * The sketch makes a connection to The Things Network (TTN) using
18 * LoRaWAN in OTAA mode. It then sends a data packet of 10 bytes to
19 * LoRaWAN port 33 around every 5 minutes. The packet contains the
20 * following 5 integer values (16 bit, most significant byte (MSB) first):
21 * 1. temperature in Celsius (signed, multiplied by 100)
22 * 2. relative humidity in percent (unsigned, multiplied by 100)
23 * 3. air pressure in Pascal (unsigned, divided by 10)
24 * 4. current altitude in Meters (unsigned, multiplied by 10)
25 * 5. battery voltage in millivolt (unsigned)

(continues on next page)

132 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

26 * These values have to be decoded by the LoRaWAN network controller
27 * using a proper "payload decoder function" written in Javascript.
28 *
29 * Note that when the board is powered over the USB connector and
30 * no battery is connected, the measured battery voltage is incorrect.
31 *
32 * If the board shall be running on a lithium polymer (LiPo) battery,
33 * it is recommended to remove the green power LED from the board or
34 * to cut the connection between the LED and the resistor lying above
35 * of it as the LED constantly draws around 8mW of power. In order to
36 * save energy the sketch puts the GPS module on the board to standby
37 * mode right from the beginning. After each measurement and data transfer
38 * the LoRaWAN module and the sensor is put to standby mode, too, and the
39 * microcontroller goes into deep sleep mode. All components require
40 * a total current of around 0.34mA during sleep mode and up to 65mA
41 * during LoRa transmission for the board version with GPS. The board
42 * version without GPS only requires 0.06mA during sleep mode. Since the
43 * entire system is mostly sleeping, the GPS board should be running
44 * around 2 years on a 6600mAh LiPo battery before recharging
45 * (6600mAh / 0.34mA / 24 = 808 days). The non GPS board version should
46 * even run for more than 10 years...
47 *
48 * This code is based on example code given on the Seeeduino LoRaWAN
49 * wiki page. It utilizes the Open Source libraries "Adafruit_BME280"
50 * and "Adafruit_Sensor" provided by the company Adafruit and the
51 * library "LoRaWan.h" provided by Seeed Studio.
52 ***/
53

54 #include <RTCZero.h>
55 #include <LoRaWan.h>
56 #include <Wire.h>
57 #include <Adafruit_Sensor.h>
58 #include <Adafruit_BME280.h>
59

60 // Keep the following line, if the board is a Seeeduino LoRaWAN with GPS,
61 // otherwise comment the line out
62

63 // #define HAS_GPS 1
64

65 #define BME280_ADDRESS (0x76) // I2C device address of the BME280 sensor
66

67 // The barometer of the BME280 can also be used to estimate the current
68 // altitude of the device, if the air pressure at sea level (NN) is known.
69 // The following value has to be set to the current air pressure at NN (in hPa)
70 // in order to give reasonable altitude estimations. Note that this value is
71 // slowly changing over time. For Munich the current value can be obtained
72 // from https://www.meteo.physik.uni-muenchen.de/mesomikro/stadt/messung.php
73

74 #define SEALEVELPRESSURE_HPA (1017.8)
75

76 Adafruit_BME280 bme280;
77

78 RTCZero rtc;
79

80 unsigned char data[10]; // buffer for the LoRaWAN data packet to be
→˓transferred

81 char buffer[256]; // buffer for text messages received from the
→˓LoRaWAN module for display (continues on next page)

2.9. Seeeduino LoRaWAN 133

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

82

83

84 void setup(void)
85 {
86 digitalWrite(38, HIGH); // Provide power to the 4 Grove connectors of

→˓the board
87

88 for(int i = 0; i < 26; i ++) // Set all pins to HIGH to save power
→˓(reduces the

89 { // current drawn during deep sleep by around
→˓0.7mA).

90 if (i!=13) { // Don't switch on the onboard user LED (pin
→˓13).

91 pinMode(i, OUTPUT);
92 digitalWrite(i, HIGH);
93 }
94 }
95

96 delay(5000); // Wait 5 secs after reset/booting to give
→˓time for potential upload

97 // of a new sketch (sketches cannot be
→˓uploaded when in sleep mode)

98 SerialUSB.begin(115200); // Initialize USB/serial connection
99 delay(500);

100 // while(!SerialUSB);
101 SerialUSB.println("Seeeduino LoRaWAN board started!");
102

103 if(!bme280.begin(BME280_ADDRESS)) { // Initialize the BME280 sensor module
104 SerialUSB.println("BME280 device error!");
105 }
106

107 // Set the BME280 to a very low power operation mode (c.f. chapter 3.5
108 // "Recommended modes of operation" in the BME280 datasheet. See
109 // https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf);
110 // proper values can only be queried every 60s
111 bme280.setSampling(Adafruit_BME280::MODE_FORCED,
112 Adafruit_BME280::SAMPLING_X16, // temperature
113 Adafruit_BME280::SAMPLING_X16, // pressure
114 Adafruit_BME280::SAMPLING_X16, // humidity
115 Adafruit_BME280::FILTER_OFF);
116

117 // nrgSave.begin(WAKE_RTC_ALARM);
118 // rtc.begin(TIME_H24);
119

120 #ifdef HAS_GPS
121 Serial.begin(9600); // Initialize serial connection to the GPS

→˓module
122 delay(500);
123 Serial.write("$PMTK161,0*28\r\n"); // Switch GPS module to standby mode as we don

→˓'t use it in this sketch
124 #endif
125

126 lora.init(); // Initialize the LoRaWAN module
127

128 memset(buffer, 0, 256); // clear text buffer
129 lora.getVersion(buffer, 256, 1);
130 memset(buffer, 0, 256); // We call getVersion() two times, because

→˓after a reset the LoRaWAN module can be (continues on next page)

134 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

131 lora.getVersion(buffer, 256, 1); // in sleep mode and then the first call only
→˓wakes it up and will not be performed.

132 SerialUSB.print(buffer);
133

134 memset(buffer, 0, 256);
135 lora.getId(buffer, 256, 1);
136 SerialUSB.print(buffer);
137

138 // The following three constants (AppEUI, DevEUI, AppKey) must be changed
139 // for every new sensor node. We are using the LoRaWAN OTAA mode (over the
140 // air activation). Each sensor node must be manually registered in the
141 // TTN console at https://console.thethingsnetwork.org before it can be
142 // started. In the TTN console create a new device with the DevEUI also
143 // being automatically generated. After the registration of the device the
144 // three values can be copied from the TTN console. A detailed explanation
145 // of these steps is given in
146 // https://learn.adafruit.com/the-things-network-for-feather?view=all
147

148 // The EUIs and the AppKey must be given in big-endian format, i.e. the
149 // most-significant-byte comes first (as displayed in the TTN console).
150 // For TTN issued AppEUIs the first bytes should be 0x70, 0xB3, 0xD5.
151

152 // void setId(char *DevAddr, char *DevEUI, char *AppEUI);
153 lora.setId(NULL, "xxxxxxxxxxxxxxxx", "yyyyyyyyyyyyyyyy");
154

155 // setKey(char *NwkSKey, char *AppSKey, char *AppKey);
156 lora.setKey(NULL, NULL, "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz");
157

158 lora.setDeciveMode(LWOTAA); // select OTAA join mode (note that
→˓setDeciveMode is not a typo; it is misspelled in the library)

159 // lora.setDataRate(DR5, EU868); // SF7, 125 kbps (highest data rate)
160 lora.setDataRate(DR3, EU868); // SF9, 125 kbps (medium data rate and

→˓range)
161 // lora.setDataRate(DR0, EU868); // SF12, 125 kbps (lowest data rate,

→˓highest max. distance)
162

163 // lora.setAdaptiveDataRate(false);
164 lora.setAdaptiveDataRate(true); // automatically adapt the data rate
165

166 lora.setChannel(0, 868.1);
167 lora.setChannel(1, 868.3);
168 lora.setChannel(2, 868.5);
169 lora.setChannel(3, 867.1);
170 lora.setChannel(4, 867.3);
171 lora.setChannel(5, 867.5);
172 lora.setChannel(6, 867.7);
173 lora.setChannel(7, 867.9);
174

175 // The following two commands can be left commented out;
176 // TTN works with the default values. (It also works when
177 // uncommenting the commands, though.)
178 // lora.setReceiceWindowFirst(0, 868.1);
179 // lora.setReceiceWindowSecond(869.525, DR0);
180

181 lora.setDutyCycle(false); // for debugging purposes only - should
→˓normally be activated

182 lora.setJoinDutyCycle(false); // for debugging purposes only - should
→˓normally be activated (continues on next page)

2.9. Seeeduino LoRaWAN 135

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

183

184 lora.setPower(14); // LoRa transceiver power (14 is the
→˓maximum for the 868 MHz band)

185

186 // while(!lora.setOTAAJoin(JOIN));
187 while(!lora.setOTAAJoin(JOIN,20)); // wait until the node has successfully

→˓joined TTN
188

189 lora.setPort(33); // all data packets are sent to LoRaWAN
→˓port 33

190 }
191

192 void loop(void)
193 {
194 bool result = false;
195 float temperature, altitude, pressure, humidity;
196 int16_t int16_temperature, int16_humidity, int16_pressure, int16_altitude, int16_

→˓vbat;
197

198 bme280.takeForcedMeasurement(); // wake the sensor up for the next readings
199

200 //get and print temperatures
201 SerialUSB.print("Temp: ");
202 SerialUSB.print(temperature = bme280.readTemperature());
203 SerialUSB.print("C ");
204

205 //get and print atmospheric pressure data
206 SerialUSB.print("Pressure: ");
207 SerialUSB.print(pressure = bme280.readPressure());
208 SerialUSB.print("Pa ");
209

210 //get and print altitude data
211 SerialUSB.print("Altitude: ");
212 SerialUSB.print(altitude = bme280.readAltitude(SEALEVELPRESSURE_HPA));
213 SerialUSB.print("m ");
214

215 //get and print humidity data
216 SerialUSB.print("Humidity: ");
217 SerialUSB.print(humidity = bme280.readHumidity());
218 SerialUSB.print("% ");
219

220 //get and print battery voltage
221 SerialUSB.print("VBat: ");
222 SerialUSB.print(int16_vbat=lora.getBatteryVoltage());
223 SerialUSB.println("mV");
224

225 int16_temperature = temperature*100.0;
226 int16_humidity = humidity*100.0;
227 int16_pressure = pressure/10.0;
228 int16_altitude = altitude*10.0;
229

230 data[0] = (byte) (int16_temperature >> 8);
231 data[1] = (byte) (int16_temperature & 0x00FF);
232 data[2] = (byte) (int16_humidity >> 8);
233 data[3] = (byte) (int16_humidity & 0x00FF);
234 data[4] = (byte) (int16_pressure >> 8);
235 data[5] = (byte) (int16_pressure & 0x00FF);

(continues on next page)

136 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

236 data[6] = (byte) (int16_altitude >> 8);
237 data[7] = (byte) (int16_altitude & 0x00FF);
238 data[8] = (byte) (int16_vbat >> 8);
239 data[9] = (byte) (int16_vbat & 0x00FF);
240

241 result = lora.transferPacket(data, 10, 5); // send the data packet (10 bytes)
→˓with a default timeout of 5 secs

242

243 if(result)
244 {
245 short length;
246 short rssi;
247

248 memset(buffer, 0, 256);
249 length = lora.receivePacket(buffer, 256, &rssi);
250

251 if(length)
252 {
253 SerialUSB.print("Length is: ");
254 SerialUSB.println(length);
255 SerialUSB.print("RSSI is: ");
256 SerialUSB.println(rssi);
257 SerialUSB.print("Data is: ");
258 for(unsigned char i = 0; i < length; i ++)
259 {
260 SerialUSB.print("0x");
261 SerialUSB.print(buffer[i], HEX);
262 SerialUSB.print(" ");
263 }
264 SerialUSB.println();
265 }
266 }
267

268 lora.setDeviceLowPower(); // bring the LoRaWAN module to sleep mode
269 doSleep((5*60-8)*1000); // deep sleep for 292 secs (+ 3 secs transmission

→˓time + 5 secs timeout = 300 secs period)
270 lora.setPort(33); // send some command to wake up the LoRaWAN module

→˓again
271 }
272

273 // The following function implements deep sleep waiting. When being called the
274 // CPU goes into deep sleep mode (for power saving). It is woken up again by
275 // the CPU-internal real time clock (RTC) after the configured time.
276 //
277 // A similar function would also be available in the standard "ArduinoLowPower"

→˓library.
278 // However, in order to be able to use that library with the Seeeduino LoRaWAN board,
279 // four files in the package "Seeed SAMD boards by Seeed Studio Version 1.3.0" that is
280 // installed using the Arduino IDE board manager need to be patched. The reason is

→˓that
281 // Seeed Studio have not updated their files to a recent Arduino SAMD version yet
282 // and the official "ArduinoLowPower" library provided by the Arduino foundation is
283 // referring to some missing functions. For further information see here:
284 // https://forum.arduino.cc/index.php?topic=603900.0 and here:
285 // https://github.com/arduino/ArduinoCore-samd/commit/

→˓b9ac48c782ca4b82ffd7e65bf2c956152386d82b
286

(continues on next page)

2.9. Seeeduino LoRaWAN 137

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

287 void doSleep(uint32_t millis) {
288 if (!rtc.isConfigured()) { // if called for the first time,
289 rtc.begin(false); // then initialize the real time clock (RTC)
290 }
291

292 uint32_t now = rtc.getEpoch();
293 rtc.setAlarmEpoch(now + millis/1000);
294 rtc.enableAlarm(rtc.MATCH_HHMMSS);
295

296 rtc.standbyMode(); // bring CPU into deep sleep mode (until woken up
→˓by the RTC)

297 }

Listing 31: TTN payload decoder for Seeeduino LoRaWAN sensor node

1 function Decoder (bytes, port) {
2 var result = {};
3 var transformers = {};
4

5 if (port==33) {
6 transformers = {
7 'temperature': function transform (bytes) {
8 value=bytes[0]*256 + bytes[1];
9 if (value>=32768) value=value-65536;

10 return value/100.0;
11 },
12 'humidity': function transform (bytes) {
13 return (bytes[0]*256 + bytes[1])/100.0;
14 },
15 'pressure': function transform (bytes) {
16 return (bytes[0]*256 + bytes[1])/10.0;
17 },
18 'altitude': function transform (bytes) {
19 return (bytes[0]*256 + bytes[1])/10.0;
20 },
21 'vbattery': function transform (bytes) {
22 return (bytes[0]*256 + bytes[1])/1000.0;
23 }
24 }
25

26 result['temperature'] = {
27 value: transformers['temperature'](bytes.slice(0, 2)),
28 uom: 'Celsius',
29 }
30

31 result['humidity'] = {
32 value: transformers['humidity'](bytes.slice(2, 4)),
33 uom: 'Percent',
34 }
35

36 result['pressure'] = {
37 value: transformers['pressure'](bytes.slice(4, 6)),
38 uom: 'hPa',
39 }
40

41 result['altitude'] = {

(continues on next page)

138 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

42 value: transformers['altitude'](bytes.slice(6, 8)),
43 uom: 'Meter',
44 }
45

46 result['vbattery'] = {
47 value: transformers['vbattery'](bytes.slice(8, 10)),
48 uom: 'Volt',
49 }
50 }
51

52 return result;
53 }

2.9.5 References

• Seeeduino LoRaWAN microcontroller

• Seeeduino LoRaWAN Wiki with instructions

• A short presentation on LoRaWAN basics and using the Seeeduino LoRaWAN board

On the RisingHF RHF76-052AM LoRaWAN module

• Product homepage

• LoRaWAN Class A/C AT Command Specification

On the Bosch BME280 sensor

• Product details

• Datasheet

• Adafruit_BME280 library for the Arduino platform

• Adafruit_Sensor library for the Arduino platform

• Instructions from Adafruit Industries how to use the BME280 and the library

2.10 Seeeduino LoRaWAN with GPS

2.10.1 Hardware

Micro-controller

The Seeeduino LoRaWAN module is operated by the 32bit microcontroller ATSAMD21G18 (ARM® Cortex®-M0+)
running at 48MHz. It has 256 KB flash memory (to store the program code) and 32 KB of RAM (to store variables,
status information, and buffers). The operating voltage of the board is 3.3V (this is important when attaching sensors
and other peripherals; they also must operate on 3.3V). The board offers 20 general purpose digital input/output pins
(20 GPIOs), 6 analog input pins (with 12bit analog digital converters (ADC)), 1 analog output pin (with 10bit digital
analog converter (DAC)), 2 serial ports (2 programmable Universal Asynchronous Receiver and Transmitters, UARTs).
The board comes with an embedded lithium battery management chip and status indicator led, which allows to directly
connect a 3.7V LiPo rechargeable battery that will be automatically recharged when the board is powered over its USB
connector. The battery voltage level can be queried from analog input A4, the charging status (charging, full) from
analog input A5. There is an on-board L70 GPS receiver module from the company Quectel Wireless Solutions and a
small chip antenna. The Seeeduino LoRaWAN GPS module is available in German shops from around 37 C to 45 C.

2.10. Seeeduino LoRaWAN with GPS 139

https://www.seeedstudio.com/Seeeduino-LoRaWAN-p-2780.html
http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
https://www.slideshare.net/MicheleLaMalvaMoreno/seeeduino-lorawan
http://www.risinghf.com/#/product-details?product_id=5&lang=en
https://wiki.ai-thinker.com/_media/rhf-ps01509_lorawan_class_ac_at_command_specification_-_v4.4.pdf
https://www.bosch-sensortec.com/bst/products/all_products/bme280
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf
https://github.com/adafruit/Adafruit_BME280_Library
https://github.com/adafruit/Adafruit_Sensor
https://learn.adafruit.com/adafruit-bme280-humidity-barometric-pressure-temperature-sensor-breakout/downloads
https://github.com/SeeedDocument/Seeeduino_LoRa/blob/master/res/L70B-M39.pdf

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 31: Seeeduino LoRaWAN GPS microcontroller from Seeed Studio.

140 Chapter 2. Contents

http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/

TUM-GIS Sensor Nodes, Release v0.0.1

The LoRa transmitter and receiver is encapsulated within an RHF76-052AM module from the Chinese company
RisingHF. The RF module contains its own microcontroller, which implements the LoRaWAN protocol. The module
is connected via the serial interface to the ATSAMD21G18 microcontroller and can be controlled by sending so-
called ‘AT’ commands. The implemented LoRaWAN functionality is compatible with LoRaWAN Class A/C. The
explanation of all supported commands as well as a number of examples on how to use the Seeeduino LoRaWAN are
given on the Seeeduino LoRaWAN Wiki.

The board has 4 on-board Grove connectors. ‘Grove’ is a framework developed by the company Seeed Studio stan-
dardizing the connectors, operating voltages, and pin configurations for attaching peripherals like sensors, actuators,
and displays to microcontrollers. The board has also the typical Arduino UNO connectors allowing to attach so-called
Arduino shields (however, please note that the shields must be working with 3.3V; the normal operating voltage for
the Arduino UNO microcontroller and its shields is 5V).

Fig. 32: The Seeeduino LoRaWAN GPS microcontroller with a 6600 mAh lithium polymer (LiPo) battery (bottom),
and an attached BME280 temperature / humidity / barometer sensor module.

Sensor

We attached a Seeed BME280 Grove module with a Bosch BME280 sensor to the first I2C Grove connector of the
Seeeduino LoRaWAN board. The BME280 measures temperature in the range -40 - 85 °C, with ±1.0°C accuracy;
0%-100% relative humidity with ±3% accuracy; and atmospheric pressure in the range 300 - 1100 hPa (1 hPa= one
hundred Pa) with ±1.0 hPa accuracy. It offers the two interface standards I2C and SPI (we are using I2C here and the
default I2C address 0x76). The atmospheric pressure changes with altitude, hence, the BME280 can also be used to
measure the approximate altitude of a place.

2.10.2 Software

The sensor node has been programmed using the Arduino IDE. Please note, that in the Arduino framework a program
is called a ‘Sketch’.

In order to support the “Seeeduino LoRaWAN” board with the Arduino IDE, make sure to have installed the package
“Seeed SAMD boards by Seeed Studio” in version 1.3.0 using the board manager in the Arduino IDE. This is also
explained on a dedicated webpage from Seeed Studio. The sketch requires the software libraries “RTCZero”, “Ar-
duino_BME280”, “Adafruit_Sensor”, “Wire”, and “LoRaWAN”. The first three have to be installed using the library

2.10. Seeeduino LoRaWAN with GPS 141

http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
http://wiki.seeedstudio.com/Grove_System/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://marcusjenkins.com/arduino-pinout-diagrams/
https://learn.sparkfun.com/tutorials/arduino-shields
https://www.kuongshun-ks.com/uno/uno-sensor/gy-bme280-3-3-precision-altimeter.html
http://wiki.seeedstudio.com/Grove-Barometer_Sensor-BME280/
https://www.bosch-sensortec.com/bst/products/all_products/bme280
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/guide/cores
http://wiki.seeedstudio.com/Seeed_Arduino_Boards/
https://www.arduino.cc/en/Guide/Libraries
https://www.arduino.cc/en/Guide/Libraries

TUM-GIS Sensor Nodes, Release v0.0.1

manager of the Arduino IDE, the fourth library is already installed with the Arduino IDE and the latter library comes
with the “Seeeduino LoRaWAN” board installation.

After the sketch has successfully established a connection to The Things Network it measures the air temperature,
humidity, and pressure every 30 seconds. From the measured values also the altitude of the device (in meters above
ground) is estimated. All four values are being encoded in two byte integer values each and then sent as an 8 bytes
data packet to the respective TTN application using LoRaWAN port 8. Please note, that LoRaWAN messages can be
addressed to ports 1-255 (port 0 is reserved); these ports are similar to port numbers 0-65535 when using the Internet
TCP/IP protocol. Voltage, pressure, altitude, and humidity values are always greater or equal to 0, but the temperature
value can also become negative. Negative values are represented as a two’s complement; this must be considered in
the Payload Decoding Function used in The Things Network (see below).

In between two sensor readings the microcontroller, the LoRaWAN module, and the sensor module are going into
deep sleep mode to save battery power. During LoRaWAN data transmission the device draws up to 65mA current.
When in sleep mode the entire node only draws around 0.06 mA power. Hence, with a 6600 mAh 3.7V LiPo battery
and the current version of the sketch the system should be able to run for many years before recharging (not taking
into account the self-discharging rate of the battery).

The source code is provided in the following section Arduino Sketch for Seeeduino LoRaWAN with GPS sensor node

2.10.3 Services

The services used for this sensor-node are:

• TheThingsNetwork service for LoRaWAN network service.

• TheThingsNetwork - OGC SensorWeb integration for uploading LoRaWAN sensor data into OGC infrastructure.

Registration of the sensor node with The Things Network (TTN)

The LoRaWAN protocol makes use of a number of different identifiers, addresses, keys, etc. These are required to
unambiguously identify devices, applications, as well as to encrypt and decrypt messages. The names and meanings
are nicely explained on a dedicated TTN web page.

The sketch given above connects the sensor node with The Things Network (TTN) using the Over-the-Air-Activation
(OTAA) mode. In this mode, we use the three keys AppEUI, DevEUI, AppKey. The DevEUI should normally be
delivered with the sensor node by the manufacturer. However, it seems that there is no explicit DevEUI provided with
the Seeeduino LoRaWAN module. Therefore, it has to be generated automatically together with the other two keys
using the TTN console. Each sensor node must be manually registered in the TTN console before it can be started.
This assumes that you already have a TTN user account (which needs to be created otherwise). In the TTN console
create a new device with also the DevEUI being automatically generated. After the registration of the device the
respective keys (AppEUI, DevEUI, AppKey) can be copied from the TTN console and must be pasted into the the
proper places in the source code of the sketch above. Please make sure that you choose for each of the three keys
are in the correct byte ordering (all are in MSB, i.e. in the same ordering as given in the TTN console). A detailed
explanation of these steps is given on this page. Then the sketch can be compiled and uploaded to the Seeeduino
LoRaWAN microcontroller. Note that the three constants (AppEUI, DevEUI, AppKey) must be changed in the source
code for every new sensor node.

Using the OTAA mode has the advantage over the ABP (activation by personalization) mode that during connection the
session keys are newly created which improves security. Another advantage is that the packet counter is automatically
reset to 0 both in the node and in the TTN application.

142 Chapter 2. Contents

https://www.arduino.cc/en/Guide/Libraries
https://www.arduino.cc/en/Guide/Libraries
https://en.wikipedia.org/wiki/Two%27s_complement
https://www.thethingsnetwork.org/docs/lorawan/address-space.html
https://console.thethingsnetwork.org
https://www.thethingsnetwork.org/docs/devices/registration.html
https://learn.adafruit.com/the-things-network-for-feather?view=all

TUM-GIS Sensor Nodes, Release v0.0.1

TTN Payload Decoding

Everytime a data packet is received by a TTN application a dedicated Javascript function is being called (Payload
Decoder Function). This function can be used to decode the received byte string and to create proper Javascript
objects or values that can directly be read by humans when looking at the incoming data packet. This is also useful to
format the data in a specific way that can then be forwarded to an external application (e.g. a sensor data platform like
MyDevices or Thingspeak).

Such a forwarding can be configured in the TTN console in the “Integrations” tab. TTN payload decoder for Seee-
duino LoRaWAN with GPS sensor node given here checks if a packet was received on LoRaWAN port 33 and then
assumes that it consists of the 10 bytes encoded as described above. It creates the five Javascript objects ‘temperature’,
‘humidity’, ‘pressure’, ‘altitude’, and ‘vbattery’. Each object has two fields: ‘value’ holds the value and ‘uom’ gives
the unit of measure. The source code can simply be copied and pasted into the ‘decoder’ tab in the TTN console after
having selected the application. Choose the option ‘Custom’ in the ‘Payload Format’ field. Note that when you also
want to handle other sensor nodes sending packets on different LoRaWAN ports, then the Payload Decoder Function
can be extended after the end of the if (port==33) {. . . } statement by adding else if (port==7) {. . . } else if (port==8)
{. . . } etc.

The Things Network - OGC SensorWeb Integration

The presented Payload Decoder Function works also with the TTN-OGC SWE Integration for the 52° North Sensor
Observation Service (SOS). This software component can be downloaded from this repository. It connects a TTN
application with a running transactional Sensor Observation Service 2.0.0 (SOS). Data packets received from TTN are
imported into the SOS. The SOS persistently stores sensor data from an arbitrary number of sensor nodes and can be
queried for the most recent as well as for historic sensor data readings. The 52° North SOS comes with its own REST
API and a nice web client allowing to browse the stored sensor data in a convenient way.

We are running an instance of the 52° North SOS and the TTN-OGC SWE Integration. The web client for this
LoRaWAN sensor node can be accessed on this webpage. Here is a screenshot showing the webclient:

Fig. 33: Web client for data visualization

2.10. Seeeduino LoRaWAN with GPS 143

https://mydevices.com/
https://thingspeak.com/
https://github.com/52North/SOS
https://github.com/52North/SOS
https://github.com/52North/ttn-ogcswe-integration
https://www.opengeospatial.org/standards/sos
http://129.187.38.201:8080/ttn-sos-integration/static/client/helgoland/index.html#/diagram?ts=ttnOGC__3,ttnOGC__4,ttnOGC__1,ttnOGC__2,ttnOGC__5

TUM-GIS Sensor Nodes, Release v0.0.1

2.10.4 Code files

Listing 32: Arduino Sketch for Seeeduino LoRaWAN with GPS sensor
node

1 /***
2 * Arduino Sketch for a LoRaWAN sensor node that is registered with
3 * 'The Things Network' (TTN) www.thethingsnetwork.org
4 *
5 * Filename: Seeeduino_LoRaWAN_GPS_BME280_OTAA_Sleep_Adafruit_V2.ino
6 *
7 * Author: Thomas H. Kolbe, thomas.kolbe@tum.de
8 * Version: 1.0.1
9 * Last update: 2019-04-17

10 *
11 * This sketch works with a Seeeduino LoRaWAN microcontroller board (with or
12 * without embedded GPS module). See http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
13 * It requires a Seeed Grove BME280 air temperature, relative humidity,
14 * and air pressure sensor module attached to the I2C Grove connector of
15 * the microcontroller board. The current configuration assumes that
16 * the BME280 is configured to I2C device address 0x76 (default).
17 * The sketch makes a connection to The Things Network (TTN) using
18 * LoRaWAN in OTAA mode. It then sends a data packet of 10 bytes to
19 * LoRaWAN port 33 around every 5 minutes. The packet contains the
20 * following 5 integer values (16 bit, most significant byte (MSB) first):
21 * 1. temperature in Celsius (signed, multiplied by 100)
22 * 2. relative humidity in percent (unsigned, multiplied by 100)
23 * 3. air pressure in Pascal (unsigned, divided by 10)
24 * 4. current altitude in Meters (unsigned, multiplied by 10)
25 * 5. battery voltage in millivolt (unsigned)
26 * These values have to be decoded by the LoRaWAN network controller
27 * using a proper "payload decoder function" written in Javascript.
28 *
29 * Note that when the board is powered over the USB connector and
30 * no battery is connected, the measured battery voltage is incorrect.
31 *
32 * If the board shall be running on a lithium polymer (LiPo) battery,
33 * it is recommended to remove the green power LED from the board or
34 * to cut the connection between the LED and the resistor lying above
35 * of it as the LED constantly draws around 8mW of power. In order to
36 * save energy the sketch puts the GPS module on the board to standby
37 * mode right from the beginning. After each measurement and data transfer
38 * the LoRaWAN module and the sensor is put to standby mode, too, and the
39 * microcontroller goes into deep sleep mode. All components require
40 * a total current of around 0.34mA during sleep mode and up to 65mA
41 * during LoRa transmission for the board version with GPS. The board
42 * version without GPS only requires 0.06mA during sleep mode. Since the
43 * entire system is mostly sleeping, the GPS board should be running
44 * around 2 years on a 6600mAh LiPo battery before recharging
45 * (6600mAh / 0.34mA / 24 = 808 days). The non GPS board version should
46 * even run for more than 10 years...
47 *
48 * This code is based on example code given on the Seeeduino LoRaWAN
49 * wiki page. It utilizes the Open Source libraries "Adafruit_BME280"
50 * and "Adafruit_Sensor" provided by the company Adafruit and the
51 * library "LoRaWan.h" provided by Seeed Studio.
52 ***/

(continues on next page)

144 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

53

54 #include <RTCZero.h>
55 #include <LoRaWan.h>
56 #include <Wire.h>
57 #include <Adafruit_Sensor.h>
58 #include <Adafruit_BME280.h>
59

60 // Keep the following line, if the board is a Seeeduino LoRaWAN with GPS,
61 // otherwise comment the line out
62

63 #define HAS_GPS 1
64

65 #define BME280_ADDRESS (0x76) // I2C device address of the BME280 sensor
66

67 // The barometer of the BME280 can also be used to estimate the current
68 // altitude of the device, if the air pressure at sea level (NN) is known.
69 // The following value has to be set to the current air pressure at NN (in hPa)
70 // in order to give reasonable altitude estimations. Note that this value is
71 // slowly changing over time. For Munich the current value can be obtained
72 // from https://www.meteo.physik.uni-muenchen.de/mesomikro/stadt/messung.php
73

74 #define SEALEVELPRESSURE_HPA (1017.8)
75

76 Adafruit_BME280 bme280;
77

78 RTCZero rtc;
79

80 unsigned char data[10]; // buffer for the LoRaWAN data packet to be
→˓transferred

81 char buffer[256]; // buffer for text messages received from the
→˓LoRaWAN module for display

82

83

84 void setup(void)
85 {
86 digitalWrite(38, HIGH); // Provide power to the 4 Grove connectors of

→˓the board
87

88 for(int i = 0; i < 26; i ++) // Set all pins to HIGH to save power
→˓(reduces the

89 { // current drawn during deep sleep by around
→˓0.7mA).

90 if (i!=13) { // Don't switch on the onboard user LED (pin
→˓13).

91 pinMode(i, OUTPUT);
92 digitalWrite(i, HIGH);
93 }
94 }
95

96 delay(5000); // Wait 5 secs after reset/booting to give
→˓time for potential upload

97 // of a new sketch (sketches cannot be
→˓uploaded when in sleep mode)

98 SerialUSB.begin(115200); // Initialize USB/serial connection
99 delay(500);

100 // while(!SerialUSB);
101 SerialUSB.println("Seeeduino LoRaWAN board started!");

(continues on next page)

2.10. Seeeduino LoRaWAN with GPS 145

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

102

103 if(!bme280.begin(BME280_ADDRESS)) { // Initialize the BME280 sensor module
104 SerialUSB.println("BME280 device error!");
105 }
106

107 // Set the BME280 to a very low power operation mode (c.f. chapter 3.5
108 // "Recommended modes of operation" in the BME280 datasheet. See
109 // https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf);
110 // proper values can only be queried every 60s
111 bme280.setSampling(Adafruit_BME280::MODE_FORCED,
112 Adafruit_BME280::SAMPLING_X16, // temperature
113 Adafruit_BME280::SAMPLING_X16, // pressure
114 Adafruit_BME280::SAMPLING_X16, // humidity
115 Adafruit_BME280::FILTER_OFF);
116

117 // nrgSave.begin(WAKE_RTC_ALARM);
118 // rtc.begin(TIME_H24);
119

120 #ifdef HAS_GPS
121 Serial.begin(9600); // Initialize serial connection to the GPS

→˓module
122 delay(500);
123 Serial.write("$PMTK161,0*28\r\n"); // Switch GPS module to standby mode as we don

→˓'t use it in this sketch
124 #endif
125

126 lora.init(); // Initialize the LoRaWAN module
127

128 memset(buffer, 0, 256); // clear text buffer
129 lora.getVersion(buffer, 256, 1);
130 memset(buffer, 0, 256); // We call getVersion() two times, because

→˓after a reset the LoRaWAN module can be
131 lora.getVersion(buffer, 256, 1); // in sleep mode and then the first call only

→˓wakes it up and will not be performed.
132 SerialUSB.print(buffer);
133

134 memset(buffer, 0, 256);
135 lora.getId(buffer, 256, 1);
136 SerialUSB.print(buffer);
137

138 // The following three constants (AppEUI, DevEUI, AppKey) must be changed
139 // for every new sensor node. We are using the LoRaWAN OTAA mode (over the
140 // air activation). Each sensor node must be manually registered in the
141 // TTN console at https://console.thethingsnetwork.org before it can be
142 // started. In the TTN console create a new device with the DevEUI also
143 // being automatically generated. After the registration of the device the
144 // three values can be copied from the TTN console. A detailed explanation
145 // of these steps is given in
146 // https://learn.adafruit.com/the-things-network-for-feather?view=all
147

148 // The EUIs and the AppKey must be given in big-endian format, i.e. the
149 // most-significant-byte comes first (as displayed in the TTN console).
150 // For TTN issued AppEUIs the first bytes should be 0x70, 0xB3, 0xD5.
151

152 // void setId(char *DevAddr, char *DevEUI, char *AppEUI);
153 lora.setId(NULL, "xxxxxxxxxxxxxxxx", "yyyyyyyyyyyyyyyy");
154

(continues on next page)

146 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

155 // setKey(char *NwkSKey, char *AppSKey, char *AppKey);
156 lora.setKey(NULL, NULL, "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz");
157

158 lora.setDeciveMode(LWOTAA); // select OTAA join mode (note that
→˓setDeciveMode is not a typo; it is misspelled in the library)

159 // lora.setDataRate(DR5, EU868); // SF7, 125 kbps (highest data rate)
160 lora.setDataRate(DR3, EU868); // SF9, 125 kbps (medium data rate and

→˓range)
161 // lora.setDataRate(DR0, EU868); // SF12, 125 kbps (lowest data rate,

→˓highest max. distance)
162

163 // lora.setAdaptiveDataRate(false);
164 lora.setAdaptiveDataRate(true); // automatically adapt the data rate
165

166 lora.setChannel(0, 868.1);
167 lora.setChannel(1, 868.3);
168 lora.setChannel(2, 868.5);
169 lora.setChannel(3, 867.1);
170 lora.setChannel(4, 867.3);
171 lora.setChannel(5, 867.5);
172 lora.setChannel(6, 867.7);
173 lora.setChannel(7, 867.9);
174

175 // The following two commands can be left commented out;
176 // TTN works with the default values. (It also works when
177 // uncommenting the commands, though.)
178 // lora.setReceiceWindowFirst(0, 868.1);
179 // lora.setReceiceWindowSecond(869.525, DR0);
180

181 lora.setDutyCycle(false); // for debugging purposes only - should
→˓normally be activated

182 lora.setJoinDutyCycle(false); // for debugging purposes only - should
→˓normally be activated

183

184 lora.setPower(14); // LoRa transceiver power (14 is the
→˓maximum for the 868 MHz band)

185

186 // while(!lora.setOTAAJoin(JOIN));
187 while(!lora.setOTAAJoin(JOIN,20)); // wait until the node has successfully

→˓joined TTN
188

189 lora.setPort(33); // all data packets are sent to LoRaWAN
→˓port 33

190 }
191

192 void loop(void)
193 {
194 bool result = false;
195 float temperature, altitude, pressure, humidity;
196 int16_t int16_temperature, int16_humidity, int16_pressure, int16_altitude, int16_

→˓vbat;
197

198 bme280.takeForcedMeasurement(); // wake the sensor up for the next readings
199

200 //get and print temperatures
201 SerialUSB.print("Temp: ");
202 SerialUSB.print(temperature = bme280.readTemperature());

(continues on next page)

2.10. Seeeduino LoRaWAN with GPS 147

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

203 SerialUSB.print("C ");
204

205 //get and print atmospheric pressure data
206 SerialUSB.print("Pressure: ");
207 SerialUSB.print(pressure = bme280.readPressure());
208 SerialUSB.print("Pa ");
209

210 //get and print altitude data
211 SerialUSB.print("Altitude: ");
212 SerialUSB.print(altitude = bme280.readAltitude(SEALEVELPRESSURE_HPA));
213 SerialUSB.print("m ");
214

215 //get and print humidity data
216 SerialUSB.print("Humidity: ");
217 SerialUSB.print(humidity = bme280.readHumidity());
218 SerialUSB.print("% ");
219

220 //get and print battery voltage
221 SerialUSB.print("VBat: ");
222 SerialUSB.print(int16_vbat=lora.getBatteryVoltage());
223 SerialUSB.println("mV");
224

225 int16_temperature = temperature*100.0;
226 int16_humidity = humidity*100.0;
227 int16_pressure = pressure/10.0;
228 int16_altitude = altitude*10.0;
229

230 data[0] = (byte) (int16_temperature >> 8);
231 data[1] = (byte) (int16_temperature & 0x00FF);
232 data[2] = (byte) (int16_humidity >> 8);
233 data[3] = (byte) (int16_humidity & 0x00FF);
234 data[4] = (byte) (int16_pressure >> 8);
235 data[5] = (byte) (int16_pressure & 0x00FF);
236 data[6] = (byte) (int16_altitude >> 8);
237 data[7] = (byte) (int16_altitude & 0x00FF);
238 data[8] = (byte) (int16_vbat >> 8);
239 data[9] = (byte) (int16_vbat & 0x00FF);
240

241 result = lora.transferPacket(data, 10, 5); // send the data packet (10 bytes)
→˓with a default timeout of 5 secs

242

243 if(result)
244 {
245 short length;
246 short rssi;
247

248 memset(buffer, 0, 256);
249 length = lora.receivePacket(buffer, 256, &rssi);
250

251 if(length)
252 {
253 SerialUSB.print("Length is: ");
254 SerialUSB.println(length);
255 SerialUSB.print("RSSI is: ");
256 SerialUSB.println(rssi);
257 SerialUSB.print("Data is: ");
258 for(unsigned char i = 0; i < length; i ++)

(continues on next page)

148 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

259 {
260 SerialUSB.print("0x");
261 SerialUSB.print(buffer[i], HEX);
262 SerialUSB.print(" ");
263 }
264 SerialUSB.println();
265 }
266 }
267

268 lora.setDeviceLowPower(); // bring the LoRaWAN module to sleep mode
269 doSleep((5*60-8)*1000); // deep sleep for 292 secs (+ 3 secs transmission

→˓time + 5 secs timeout = 300 secs period)
270 lora.setPort(33); // send some command to wake up the LoRaWAN module

→˓again
271 }
272

273 // The following function implements deep sleep waiting. When being called the
274 // CPU goes into deep sleep mode (for power saving). It is woken up again by
275 // the CPU-internal real time clock (RTC) after the configured time.
276 //
277 // A similar function would also be available in the standard "ArduinoLowPower"

→˓library.
278 // However, in order to be able to use that library with the Seeeduino LoRaWAN board,
279 // four files in the package "Seeed SAMD boards by Seeed Studio Version 1.3.0" that is
280 // installed using the Arduino IDE board manager need to be patched. The reason is

→˓that
281 // Seeed Studio have not updated their files to a recent Arduino SAMD version yet
282 // and the official "ArduinoLowPower" library provided by the Arduino foundation is
283 // referring to some missing functions. For further information see here:
284 // https://forum.arduino.cc/index.php?topic=603900.0 and here:
285 // https://github.com/arduino/ArduinoCore-samd/commit/

→˓b9ac48c782ca4b82ffd7e65bf2c956152386d82b
286

287 void doSleep(uint32_t millis) {
288 if (!rtc.isConfigured()) { // if called for the first time,
289 rtc.begin(false); // then initialize the real time clock (RTC)
290 }
291

292 uint32_t now = rtc.getEpoch();
293 rtc.setAlarmEpoch(now + millis/1000);
294 rtc.enableAlarm(rtc.MATCH_HHMMSS);
295

296 rtc.standbyMode(); // bring CPU into deep sleep mode (until woken up
→˓by the RTC)

297 }

Listing 33: TTN payload decoder for Seeeduino LoRaWAN with GPS
sensor node

1 function Decoder (bytes, port) {
2 var result = {};
3 var transformers = {};
4

5 if (port==33) {
6 transformers = {
7 'temperature': function transform (bytes) {

(continues on next page)

2.10. Seeeduino LoRaWAN with GPS 149

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

8 value=bytes[0]*256 + bytes[1];
9 if (value>=32768) value=value-65536;

10 return value/100.0;
11 },
12 'humidity': function transform (bytes) {
13 return (bytes[0]*256 + bytes[1])/100.0;
14 },
15 'pressure': function transform (bytes) {
16 return (bytes[0]*256 + bytes[1])/10.0;
17 },
18 'altitude': function transform (bytes) {
19 return (bytes[0]*256 + bytes[1])/10.0;
20 },
21 'vbattery': function transform (bytes) {
22 return (bytes[0]*256 + bytes[1])/1000.0;
23 }
24 }
25

26 result['temperature'] = {
27 value: transformers['temperature'](bytes.slice(0, 2)),
28 uom: 'Celsius',
29 }
30

31 result['humidity'] = {
32 value: transformers['humidity'](bytes.slice(2, 4)),
33 uom: 'Percent',
34 }
35

36 result['pressure'] = {
37 value: transformers['pressure'](bytes.slice(4, 6)),
38 uom: 'hPa',
39 }
40

41 result['altitude'] = {
42 value: transformers['altitude'](bytes.slice(6, 8)),
43 uom: 'Meter',
44 }
45

46 result['vbattery'] = {
47 value: transformers['vbattery'](bytes.slice(8, 10)),
48 uom: 'Volt',
49 }
50 }
51

52 return result;
53 }

2.10.5 References

• Seeeduino LoRaWAN GPS microcontroller

• Seeeduino LoRaWAN Wiki with instructions

• A short presentation on LoRaWAN basics and using the Seeeduino LoRaWAN board

• L70 GPS receiver module from the company Quectel Wireless Solutions

150 Chapter 2. Contents

https://www.seeedstudio.com/Seeeduino-LoRaWAN-W-GPS-p-2781.html
http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
https://www.slideshare.net/MicheleLaMalvaMoreno/seeeduino-lorawan
https://www.quectel.com/product/l70.htm

TUM-GIS Sensor Nodes, Release v0.0.1

• Adafruit GPS library (can be used with the L70 GPS module)

On battery saving / using the deep sleep mode

• Adafruit Feather 32u4 LoRa - long transmission time after deep sleep - End Devices (Nodes) - The Things
Network

• Full Arduino Mini LoraWAN and 1.3uA Sleep Mode - End Devices (Nodes) - The Things Network

• Adding Method to Adjust hal_ticks Upon Waking Up from Sleep · Issue #109 · matthijskooijman/arduino-lmic

• minilora-test/minilora-test.ino at cbe686826bd84fac8381de47b5f5b02dd47c2ca0 · tkerby/minilora-test

• Arduino-LMIC library with low power mode - Mario Zwiers

2.11 All-on-one Rpi Node

This sensor node is made to showcase a use-case of Raspberry Pi for a complete all on one sensor node. For achieving
this a DHT-22 sensor along with a digital light sensor was used to measure temperature, humidity, and light. The
sensor readings were directly pushed to the FROST Server running on the Pi itself. As a result, the Pi act as an
independent sensor system running on the WLAN/WiFi network.

Fig. 34: Hardware setup.

2.11.1 Hardware

To realize the objective, following components were used:

• Raspberry Pi 3 model B

• Grove Pi Plus Shield for Raspberry Pi

2.11. All-on-one Rpi Node 151

https://github.com/adafruit/Adafruit_GPS
https://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/7andhttps://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/13
https://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/7andhttps://www.thethingsnetwork.org/forum/t/adafruit-feather-32u4-lora-long-transmission-time-after-deep-sleep/11678/13
https://www.thethingsnetwork.org/forum/t/full-arduino-mini-lorawan-below-1ua-sleep-mode/8059/97
https://github.com/matthijskooijman/arduino-lmic/issues/109
https://github.com/tkerby/minilora-test/blob/cbe686826bd84fac8381de47b5f5b02dd47c2ca0/minilora-test/minilora-test.ino#L190
https://mariozwiers.de/2018/04/04/arduino-lmic-library-with-low-power-mode/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://wiki.seeedstudio.com/GrovePi_Plus/

TUM-GIS Sensor Nodes, Release v0.0.1

• Grove - Temperature & Humidity Sensor

• Grove - Digital Light Sensor

• Micro USB Charger

2.11.2 Wiring setup

First of all, the grove base shield was connected over the Raspberry Pi board. Then, the sensor connections were made
using the connector cables as following:

• DHT22 Sensor – Digital pin D4

• Digital Light Sensor – I2C pin-1

Apart from this, there is no need of any other wiring in this case.

Once all these connection were made, the board is remotely accessed with a computer using SSH/VNC mode. Further,
steps of software part needs to be followed.

2.11.3 Software

Configuring eduroam

To enable the raspberry pi node to connect with the eduroam WiFi network, first of all download this T-Telesec Global
Root Class 2 certificate in .pem format. Copy this certificate file in the /etc/ssl/certs/ folder of the Raspberry Pi.

Now, enter the following command:

sudo nano /etc/network/interfaces

Edit this file and enter the following lines in the file. If the file is already having these lines, keep it unchanged.

allow-hotplug wlan0
iface wlan0 inet manual
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

Save the file with Ctrl+X and then press Y. Now again enter following command:

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

In the editor mode, enter the following lines in this file. Modify the Identity and Password with the correct eduroam
login credentials. Save the file with Ctrl+X and then press Y.

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=DE

network={
ssid="eduroam"
proto=RSN
key_mgmt=WPA-EAP
eap=PEAP
ca_cert="/etc/ssl/certs/T-TeleSec_GlobalRoot_Class_2.pem"
identity="gxxxxxx@eduroam.mwn.de"
password="XXXXXXXXXX"
phase1="peaplabel=0"

(continues on next page)

152 Chapter 2. Contents

http://wiki.seeedstudio.com/Grove-Temperature_and_Humidity_Sensor_Pro/
http://wiki.seeedstudio.com/Grove-Digital_Light_Sensor/
http://wiki.seeedstudio.com/Grove_Base_Hat_for_Raspberry_Pi/
https://wiki.tum.de/display/geosensorweb/Remote+access+Raspberry+Pi
https://www.pki.dfn.de/wurzelzertifikate/globalroot2/#c18447
https://www.pki.dfn.de/wurzelzertifikate/globalroot2/#c18447

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

phase2="auth=MSCHAPV2"
subject_match="radius.lrz.de"}

Finally, enter the following command to restart the wifi configuration. Reboot the RaspberryPi and it should have a
running WiFi with eduroam.

sudo wpa_supplicant -i wlan0 -c /etc/wpa_supplicant/wpa_supplicant.conf

Installing docker

To install docker service on the raspberry pi follow the tutorial available here and perform till step 4-i. After this you
will have a running docker service on your raspberrypi.

Installing Node-Red

To install a node-red on the raspberyy pi node follow the following tutorial or alternatively follow the commands given
below:

sudo apt-get install build-essential
sudo apt-get update
sudo apt-get upgrade
bash <(curl -sL https://raw.githubusercontent.com/node-red/linux-installers/master/
→˓deb/update-nodejs-and-nodered)
sudo systemctl start nodered.service #Autostart node-red at startup
sudo systemctl enable nodered.service #Autostart node-red at startup

After this, you should have a running node-red service on port 1880 which can be accessed via http://localhost:1880

It is to be noted, that although we have installed a node-red service on our sensor-node, we aren’t using it for this
example.

Installing FROST Server

To setup a FROST server follow this detailed guide available on its github repository. Basically there are five major
stpes:

• Setting up Postgre SQL database

• Downloading pre-compiled MQTTP FROST sever

• Installing TOMCAT

• Add the PostgreSQL and PostGIS jars to $CATALINA_HOME/lib

• Deploy FROST Server on TOMCAT

Step-by-step commands are also provided below for the reference:

apt-get install postgresql postgis pgadmin3
sudo apt-get update # update package list
sudo apt install openjdk-11-jdk
sudo apt-get install tomcat8 tomcat8-docs tomcat8-admin # install tomcat
sudo nano /etc/tomcat8/tomcat-users.xml
sudo nano /usr/share/tomcat8-admin/manager/WEB-INF/web.xml

(continues on next page)

2.11. All-on-one Rpi Node 153

https://www.docker.com/blog/happy-pi-day-docker-raspberry-pi/
https://help.ubidots.com/en/articles/1958375-how-to-install-node-red-in-raspberry-pi
http://localhost:1880
https://github.com/FraunhoferIOSB/FROST-Server
https://github.com/FraunhoferIOSB/FROST-Server/wiki/Installation
https://github.com/FraunhoferIOSB/FROST-Server/wiki/PostgreSQL-setup
https://bintray.com/fraunhoferiosb/Maven/download_file?file_path=de%2Ffraunhofer%2Fiosb%2Filt%2FFROST-Server%2FFROST-Server.MQTTP%2F1.10.1%2FFROST-Server.MQTTP-1.10.1.war
https://github.com/FraunhoferIOSB/FROST-Server/wiki/Tomcat-Deployment
http://repo.maven.apache.org/maven2/org/postgresql/postgresql/9.4.1212/postgresql-9.4.1212.jar
http://repo.maven.apache.org/maven2/net/postgis/postgis-jdbc/2.2.1/postgis-jdbc-2.2.1.jar
https://github.com/FraunhoferIOSB/FROST-Server/wiki/Tomcat-Deployment#deploy-frost-server-in-tomcat

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

export CATALINA_HOME=/usr/share/tomcat8
sudo service tomcat8 restart

After the above steps are completed, a SensorThings API service should be running at: http://localhost:8080/
FROST-Service/v1.0

GrovePi+ and Sensors

To create this sensor node, we used Python for setting up the Raspberry Pi. First, install the Dexter Grove Pi plus
library on the board. Now download and run the Python script for All-on-one Raspberry Pi sensor node file in the text
editor. This code was created by merging the example code of each of these attached sensor with the python code for
transmitting the data to the FROST server. Some required changes were made while merging the example codes, such
as changing the pin number for the sensor. The code also requires following dependent libraries to run:

• Adafruit_I2C.pyc for Grove Pi plus board

• Adafruit_I2C.pyc for Adafruit I2C Sensor node

Download these two .pyc files in the same folder with the Python script for All-on-one Raspberry Pi sensor node code
file. Create a sub-folder inside this main folder and rename it as “lib”. Move the Adafruit_I2C.pyc into that lib folder.
Now, the code can be compiled and run successfully. To post the sensor data to the FROST sever, an http post request
needs to be made from the python. For this we use requests library available in the python. The URL needs to be
configured in the ‘URL’ variable. Each post request is made separately with the unique datastream id of that particular
sensor. Modify the post requests depending on the sensor value and the datastream ids.

Listing 34: HTTP post request in Python script for All-on-one Raspberry
Pi sensor node

1 import requests, json
2 URL= "http://tumgispinode.duckdns.org:8080/FROST-Server/v1.0/Observations"
3 header = {"Content-type" : "application/json"}
4 payload = {'result': temp, 'Datastream': {'@iot.id':

→˓1}}
5 r = requests.post(URL, data=json.dumps(payload))
6 payload = {'result': humidity, 'Datastream': {'@iot.id

→˓': 2}}
7 r = requests.post(URL, data=json.dumps(payload))
8 payload = {'result': readVisibleLux(), 'Datastream': {

→˓'@iot.id': 3}}
9 r = requests.post(URL, data=json.dumps(payload))

10 print(r.text)

To execute the code file run the following command:

python all_on_one_rpi_node.py

The code for sensors need to be modified according to the sensors used. The code below shows the part of the code
used here to read, store, and print the sensor values.

Listing 35: Setup the sensors in Python script for All-on-one Raspberry
Pi sensor node

1 blue = 0 # The Blue colored sensor.
2 white = 1 # The White colored sensor.
3

(continues on next page)

154 Chapter 2. Contents

http://localhost:8080/FROST-Service/v1.0
http://localhost:8080/FROST-Service/v1.0
http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/
http://wiki.seeedstudio.com/Seeeduino_LoRAWAN/

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

4 def main():
5 init()
6 while (True):
7 try:
8 # This example uses the blue colored sensor.
9 # The first parameter is the port, the second parameter is

→˓the type of sensor.
10 [temp,humidity] = grovepi.dht(sensor,white)
11 if math.isnan(temp) == False and math.isnan(humidity) ==

→˓False:
12 print("temp = %.02f C humidity =%.02f%%"%(temp,

→˓humidity))
13 print("Lux: %i [Vis+IR=%i, IR=%i @ Gain=%ix, Timing=%.

→˓1fms]" % (readVisibleLux(), channel0, channel1, gain_m, timing_ms))
14 sleep(50)
15 except IOError:
16 print ("Error")

2.11.4 Services

This node direclty pushes the sensor data to the OGC Sensor Things API configured on the FROST Server using
WLAN or WiFi connection. To be able to access the device from the local LAN we use the DNS service from the
DuckDNS.

DuckDNS

DuckDNS is a free dynamic DNS hosted on AWS. Anyone can create a free account on this platform and register an
ipaddress with a free subdomain as xxxx.duckdns.org. For this example we registered our ipaddress as tumgispin-
ode.duckdns.org. It is required to update the ip address on the website if the ip of the device has changed. This can be
automated with a shell script on Raspberry Pi to check the ip and update it on the duckdns website if it has changed.
This is the reference Shell script for updating IP address on duckdns platform used in this example. Modify the ECHO
URL and the token no with your set-dns address and the authentication token no from the duckdns website.

In addition to that, a cron tab task needs to be setup for running this shell script every few minutes. Enter the crontab
edit mode with

crontab -e

Now add the following lines in the end to automatically run the shell script every five minutes and the always run the
python code for sensor readings on the boot. Modify the path of the files according to your file location.

*/5 * * * * /home/pi/duckdns/duck.sh
@reboot python /home/pi/GrovePi/Node/node.py

Grafana Dashboard

To visualize the collected sensor data we use dashboard service available from Grafana. To install Grafana using
docker run:

2.11. All-on-one Rpi Node 155

http://www.duckdns.org/
https://www.duckdns.org/install.jsp
https://grafana.com/
https://grafana.com/docs/grafana/latest/installation/docker/
https://grafana.com/docs/grafana/latest/installation/docker/

TUM-GIS Sensor Nodes, Release v0.0.1

$ docker run -d -p 3000:3000 grafana/grafana

To enable the Grafana service to be able to read the data from the OGC Sensor things API we need to use linksmart-
sensorthings-datasource extension. There is another repository explaining this installation, alternatively you install it
with following commands:

docker exec -it -u root grafana /bin/bash
apt-get update
./bin/grafana-cli plugins install linksmart-sensorthings-datasource

Datastreams setup for this sensor node on the FROST server can be seen at: http://tumgispinode.duckdns.org:8080/
FROST-Server/v1.0/Datastreams

The GRAFANA dash-board for visualizing the collected data is available at: http://tumgispinode.duckdns.org:3000/d/
NAn_6Jmgk/raspberry-pi-node?orgId=1

2.11.5 Code files

Listing 36: Python script for All-on-one Raspberry
Pi sensor node

1 import grovepi
2 import math
3 from time import sleep
4 import smbus
5 import requests, json
6 from Adafruit_I2C import Adafruit_I2C
7 import RPi.GPIO as GPIO
8 from smbus import SMBus
9

10 URL= "http://tumgispinode.duckdns.org:8080/FROST-Server/v1.0/Observations"
11 header = {"Content-type" : "application/json"}
12

13 TSL2561_Control = 0x80
14 TSL2561_Timing = 0x81
15 TSL2561_Interrupt = 0x86
16 TSL2561_Channel0L = 0x8C
17 TSL2561_Channel0H = 0x8D
18 TSL2561_Channel1L = 0x8E
19 TSL2561_Channel1H = 0x8F
20

21 TSL2561_Address = 0x29 #device address
22

23 LUX_SCALE = 14 # scale by 2^14
24 RATIO_SCALE = 9 # scale ratio by 2^9
25 CH_SCALE = 10 # scale channel values by 2^10
26 CHSCALE_TINT0 = 0x7517 # 322/11 * 2^CH_SCALE
27 CHSCALE_TINT1 = 0x0fe7 # 322/81 * 2^CH_SCALE
28

29 K1T = 0x0040 # 0.125 * 2^RATIO_SCALE
30 B1T = 0x01f2 # 0.0304 * 2^LUX_SCALE
31 M1T = 0x01be # 0.0272 * 2^LUX_SCALE
32 K2T = 0x0080 # 0.250 * 2^RATIO_SCA
33 B2T = 0x0214 # 0.0325 * 2^LUX_SCALE
34 M2T = 0x02d1 # 0.0440 * 2^LUX_SCALE
35 K3T = 0x00c0 # 0.375 * 2^RATIO_SCALE

(continues on next page)

156 Chapter 2. Contents

https://grafana.com/grafana/plugins/linksmart-sensorthings-datasource
https://grafana.com/grafana/plugins/linksmart-sensorthings-datasource
https://github.com/tum-gis/iot-frost-ecosystem/tree/master/Grafana
http://tumgispinode.duckdns.org:8080/FROST-Server/v1.0/Datastreams
http://tumgispinode.duckdns.org:8080/FROST-Server/v1.0/Datastreams
http://tumgispinode.duckdns.org:3000/d/NAn_6Jmgk/raspberry-pi-node?orgId=1
http://tumgispinode.duckdns.org:3000/d/NAn_6Jmgk/raspberry-pi-node?orgId=1

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

36 B3T = 0x023f # 0.0351 * 2^LUX_SCALE
37 M3T = 0x037b # 0.0544 * 2^LUX_SCALE
38 K4T = 0x0100 # 0.50 * 2^RATIO_SCALE
39 B4T = 0x0270 # 0.0381 * 2^LUX_SCALE
40 M4T = 0x03fe # 0.0624 * 2^LUX_SCALE
41 K5T = 0x0138 # 0.61 * 2^RATIO_SCALE
42 B5T = 0x016f # 0.0224 * 2^LUX_SCALE
43 M5T = 0x01fc # 0.0310 * 2^LUX_SCALE
44 K6T = 0x019a # 0.80 * 2^RATIO_SCALE
45 B6T = 0x00d2 # 0.0128 * 2^LUX_SCALE
46 M6T = 0x00fb # 0.0153 * 2^LUX_SCALE
47 K7T = 0x029a # 1.3 * 2^RATIO_SCALE
48 B7T = 0x0018 # 0.00146 * 2^LUX_SCALE
49 M7T = 0x0012 # 0.00112 * 2^LUX_SCALE
50 K8T = 0x029a # 1.3 * 2^RATIO_SCALE
51 B8T = 0x0000 # 0.000 * 2^LUX_SCALE
52 M8T = 0x0000 # 0.000 * 2^LUX_SCALE
53

54

55

56 K1C = 0x0043 # 0.130 * 2^RATIO_SCALE
57 B1C = 0x0204 # 0.0315 * 2^LUX_SCALE
58 M1C = 0x01ad # 0.0262 * 2^LUX_SCALE
59 K2C = 0x0085 # 0.260 * 2^RATIO_SCALE
60 B2C = 0x0228 # 0.0337 * 2^LUX_SCALE
61 M2C = 0x02c1 # 0.0430 * 2^LUX_SCALE
62 K3C = 0x00c8 # 0.390 * 2^RATIO_SCALE
63 B3C = 0x0253 # 0.0363 * 2^LUX_SCALE
64 M3C = 0x0363 # 0.0529 * 2^LUX_SCALE
65 K4C = 0x010a # 0.520 * 2^RATIO_SCALE
66 B4C = 0x0282 # 0.0392 * 2^LUX_SCALE
67 M4C = 0x03df # 0.0605 * 2^LUX_SCALE
68 K5C = 0x014d # 0.65 * 2^RATIO_SCALE
69 B5C = 0x0177 # 0.0229 * 2^LUX_SCALE
70 M5C = 0x01dd # 0.0291 * 2^LUX_SCALE
71 K6C = 0x019a # 0.80 * 2^RATIO_SCALE
72 B6C = 0x0101 # 0.0157 * 2^LUX_SCALE
73 M6C = 0x0127 # 0.0180 * 2^LUX_SCALE
74 K7C = 0x029a # 1.3 * 2^RATIO_SCALE
75 B7C = 0x0037 # 0.00338 * 2^LUX_SCALE
76 M7C = 0x002b # 0.00260 * 2^LUX_SCALE
77 K8C = 0x029a # 1.3 * 2^RATIO_SCALE
78 B8C = 0x0000 # 0.000 * 2^LUX_SCALE
79 M8C = 0x0000 # 0.000 * 2^LUX_SCALE
80

81 # bus parameters
82 rev = GPIO.RPI_REVISION
83 if rev == 2 or rev == 3:
84 bus = smbus.SMBus(1)
85 else:
86 bus = smbus.SMBus(0)
87 i2c = Adafruit_I2C(TSL2561_Address)
88

89 debug = False
90 cooldown_time = 0.005 # measured in seconds
91 packageType = 0 # 0=T package, 1=CS package
92 gain = 0 # current gain: 0=1x, 1=16x [dynamically selected]

(continues on next page)

2.11. All-on-one Rpi Node 157

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

93 gain_m = 1 # current gain, as multiplier
94 timing = 2 # current integration time: 0=13.7ms, 1=101ms, 2=402ms [dynamically

→˓selected]
95 timing_ms = 0 # current integration time, in ms
96 channel0 = 0 # raw current value of visible+ir sensor
97 channel1 = 0 # raw current value of ir sensor
98 schannel0 = 0 # normalized current value of visible+ir sensor
99 schannel1 = 0 # normalized current value of ir sensor

100

101

102 def readRegister(address):
103 try:
104 byteval = i2c.readU8(address)
105

106 sleep(cooldown_time)
107 if (debug):
108 print("TSL2561.readRegister: returned 0x%02X from reg 0x%02X"

→˓% (byteval, address))
109 return byteval
110 except IOError:
111 print("TSL2561.readRegister: error reading byte from reg 0x%02X" %

→˓address)
112 return -1
113

114

115 def writeRegister(address, val):
116 try:
117 i2c.write8(address, val)
118

119 sleep(cooldown_time)
120 if (debug):
121 print("TSL2561.writeRegister: wrote 0x%02X to reg 0x%02X" %

→˓(val, address))
122 except IOError:
123

124 sleep(cooldown_time)
125 print("TSL2561.writeRegister: error writing byte to reg 0x%02X" %

→˓address)
126 return -1
127

128 def powerUp():
129 writeRegister(TSL2561_Control, 0x03)
130

131 def powerDown():
132 writeRegister(TSL2561_Control, 0x00)
133

134 def setTintAndGain():
135 global gain_m, timing_ms
136

137 if gain == 0:
138 gain_m = 1
139 else:
140 gain_m = 16
141

142 if timing == 0:
143 timing_ms = 13.7
144 elif timing == 1:

(continues on next page)

158 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

145 timing_ms = 101
146 else:
147 timing_ms = 402
148 writeRegister(TSL2561_Timing, timing | gain << 4)
149

150 def readLux():
151 sleep(float(timing_ms + 1) / 1000)
152

153 ch0_low = readRegister(TSL2561_Channel0L)
154 ch0_high = readRegister(TSL2561_Channel0H)
155 ch1_low = readRegister(TSL2561_Channel1L)
156 ch1_high = readRegister(TSL2561_Channel1H)
157

158 global channel0, channel1
159 channel0 = (ch0_high<<8) | ch0_low
160 channel1 = (ch1_high<<8) | ch1_low
161

162 sleep(cooldown_time)
163 if debug:
164 print("TSL2561.readVisibleLux: channel 0 = %i, channel 1 = %i [gain=

→˓%ix, timing=%ims]" % (channel0, channel1, gain_m, timing_ms))
165

166 def readVisibleLux():
167 global timing, gain
168

169 powerUp()
170 readLux()
171

172 if channel0 < 500 and timing == 0:
173 timing = 1
174 sleep(cooldown_time)
175 if debug:
176 print("TSL2561.readVisibleLux: too dark. Increasing

→˓integration time from 13.7ms to 101ms")
177 setTintAndGain()
178 readLux()
179

180 if channel0 < 500 and timing == 1:
181 timing = 2
182 sleep(cooldown_time)
183 if debug:
184 print("TSL2561.readVisibleLux: too dark. Increasing

→˓integration time from 101ms to 402ms")
185 setTintAndGain()
186 readLux()
187

188 if channel0 < 500 and timing == 2 and gain == 0:
189 gain = 1
190 sleep(cooldown_time)
191 if debug:
192 print("TSL2561.readVisibleLux: too dark. Setting high gain")
193 setTintAndGain()
194 readLux()
195

196 if (channel0 > 20000 or channel1 > 20000) and timing == 2 and gain == 1:
197 gain = 0
198 sleep(cooldown_time)

(continues on next page)

2.11. All-on-one Rpi Node 159

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

199 if debug:
200 print("TSL2561.readVisibleLux: enough light. Setting low gain

→˓")
201 setTintAndGain()
202 readLux()
203

204 if (channel0 > 20000 or channel1 > 20000) and timing == 2:
205 timing = 1
206 sleep(cooldown_time)
207 if debug:
208 print("TSL2561.readVisibleLux: enough light. Reducing

→˓integration time from 402ms to 101ms")
209 setTintAndGain()
210 readLux()
211

212 if (channel0 > 10000 or channel1 > 10000) and timing == 1:
213 timing = 0
214 sleep(cooldown_time)
215 if debug:
216 print("TSL2561.readVisibleLux: enough light. Reducing

→˓integration time from 101ms to 13.7ms")
217 setTintAndGain()
218 readLux()
219

220 powerDown()
221

222 if (timing == 0 and (channel0 > 5000 or channel1 > 5000)) or (timing == 1 and
→˓(channel0 > 37000 or channel1 > 37000)) or (timing == 2 and (channel0 > 65000 or
→˓channel1 > 65000)):

223 # overflow
224 return -1
225

226 return calculateLux(channel0, channel1)
227

228 def calculateLux(ch0, ch1):
229 chScale = 0
230 if timing == 0: # 13.7 msec
231 chScale = CHSCALE_TINT0
232 elif timing == 1: # 101 msec
233 chScale = CHSCALE_TINT1;
234 else: # assume no scaling
235 chScale = (1 << CH_SCALE)
236

237 if gain == 0:
238 chScale = chScale << 4 # scale 1X to 16X
239

240 # scale the channel values
241 global schannel0, schannel1
242 schannel0 = (ch0 * chScale) >> CH_SCALE
243 schannel1 = (ch1 * chScale) >> CH_SCALE
244

245 ratio = 0
246 if schannel0 != 0:
247 ratio = (schannel1 << (RATIO_SCALE+1)) / schannel0
248 ratio = (ratio + 1) >> 1
249

250 if packageType == 0: # T package
(continues on next page)

160 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

251 if ((ratio >= 0) and (ratio <= K1T)):
252 b=B1T; m=M1T;
253 elif (ratio <= K2T):
254 b=B2T; m=M2T;
255 elif (ratio <= K3T):
256 b=B3T; m=M3T;
257 elif (ratio <= K4T):
258 b=B4T; m=M4T;
259 elif (ratio <= K5T):
260 b=B5T; m=M5T;
261 elif (ratio <= K6T):
262 b=B6T; m=M6T;
263 elif (ratio <= K7T):
264 b=B7T; m=M7T;
265 elif (ratio > K8T):
266 b=B8T; m=M8T;
267 elif packageType == 1: # CS package
268 if ((ratio >= 0) and (ratio <= K1C)):
269 b=B1C; m=M1C;
270 elif (ratio <= K2C):
271 b=B2C; m=M2C;
272 elif (ratio <= K3C):
273 b=B3C; m=M3C;
274 elif (ratio <= K4C):
275 b=B4C; m=M4C;
276 elif (ratio <= K5C):
277 b=B5C; m=M5C;
278 elif (ratio <= K6C):
279 b=B6C; m=M6C;
280 elif (ratio <= K7C):
281 b=B7C; m=M7C;
282

283 temp = ((schannel0*b)-(schannel1*m))
284 if temp < 0:
285 temp = 0;
286 temp += (1<<(LUX_SCALE-1))
287 # strip off fractional portion
288 lux = temp>>LUX_SCALE
289 sleep(cooldown_time)
290 if debug:
291 print("TSL2561.calculateLux: %i" % lux)
292

293 return lux
294

295 def init():
296 powerUp()
297 setTintAndGain()
298 writeRegister(TSL2561_Interrupt, 0x00)
299 powerDown()
300 # Connect the Grove Temperature & Humidity Sensor Pro to digital port D4
301 # This example uses the blue colored sensor.
302 # SIG,NC,VCC,GND
303 sensor = 4 # The Sensor goes on digital port 4.
304

305 # temp_humidity_sensor_type
306 # Grove Base Kit comes with the blue sensor.
307 blue = 0 # The Blue colored sensor.

(continues on next page)

2.11. All-on-one Rpi Node 161

TUM-GIS Sensor Nodes, Release v0.0.1

(continued from previous page)

308 white = 1 # The White colored sensor.
309

310 def main():
311 init()
312 while (True):
313 try:
314 # This example uses the blue colored sensor.
315 # The first parameter is the port, the second parameter is

→˓the type of sensor.
316 [temp,humidity] = grovepi.dht(sensor,white)
317 if math.isnan(temp) == False and math.isnan(humidity) ==

→˓False:
318 print("temp = %.02f C humidity =%.02f%%"%(temp,

→˓humidity))
319 print("Lux: %i [Vis+IR=%i, IR=%i @ Gain=%ix, Timing=%.

→˓1fms]" % (readVisibleLux(), channel0, channel1, gain_m, timing_ms))
320 payload = {'result': temp, 'Datastream': {'@iot.id':

→˓1}}
321 r = requests.post(URL, data=json.dumps(payload))
322 payload = {'result': humidity, 'Datastream': {'@iot.id

→˓': 2}}
323 r = requests.post(URL, data=json.dumps(payload))
324 payload = {'result': readVisibleLux(), 'Datastream': {

→˓'@iot.id': 3}}
325 r = requests.post(URL, data=json.dumps(payload))
326 print(r.text)
327 sleep(50)
328 except IOError:
329 print ("Error")
330

331

332

333 if __name__ == "__main__":
334 main()

162 Chapter 2. Contents

TUM-GIS Sensor Nodes, Release v0.0.1

Listing 37: Shell script for updating IP address on
duckdns platform

1 #!/bin/bash
2

3 getMyIP() {
4 local _ip _myip _line _nl=$'\n'
5 while IFS=$': \t' read -a _line ;do
6 [-z "${_line%inet}"] &&
7 _ip=${_line[${#_line[1]}>4?1:2]} &&
8 ["${_ip#127.0.0.1}"] && _myip=$_ip
9 done< <(LANG=C /sbin/ifconfig)

10 printf ${1+-v} $1 "%s${_nl:0:$[${#1}>0?0:1]}" $_myip
11 }
12

13 echo url="https://www.duckdns.org/update?domains=tumgispinode.duckdns.org&
→˓token=XXXXXXXXXXXXXXXXXX&ip=$(getMyIP)&verbose=TRUE" | curl -k -o /home/pi/duckdns/
→˓duck.log -K -

2.11.6 References

• Python script for All-on-one Raspberry Pi sensor node

• Shell script for updating IP address on duckdns platform

• Configure Eduroam on Raspberry Pi

• Install docker on Raspberry Pi

• Fraunhofer FROST Server

• FROST Server Wiki Guide

• Duckdns auto ip address updater with a Shell script and Crontab task scheduler

2.12 Wemos TTGO T-Beam

2.12.1 Hardware

Micro-controller

The Wemos TTGO T-Beam is especially suited for mobile operations, because it has an on-board battery holder for
an 18650 lithium polymer (LiPo) battery, a GPS receiver, a LoRa transceiver module (using the LoRa chip SX1276)
dedicated to the 868 MHz frequency band, and an embedded battery charger. The module is operated by the Espressif
ESP32 microcontroller board, which contains a dual-core Xtensa 32bit LX6 processor running with up to 240MHz, 4
MB of flash memory (to store the program code and some files within a file system), and 520 KB of RAM (to store
variables, status information, and buffers). The ESP32 module also has built-in WiFi and Bluetooth LE connectivity.
In addition, the TTGO T-Beam has 4 MB of PSRAM (pseudo static RAM) that is used as a memory extension for the
ESP32. The operating voltage of the board is 3.3V (this is important when attaching sensors and other peripherals;
they also must operate on 3.3V). The board offers 18 general purpose input/output pins (18 GPIOs), from which up to
12 can be used as analog input pins (with 12bit analog digital converters (ADC)) and one as analog output pin (8bit
digital analog converter (DAC)). Some GPIO pins can be used as serial port (programmable Universal Asynchronous
Receiver and Transmitter, UART), I2C port, SPI port, and I2S port. The USB port is connected internally via a

2.12. Wemos TTGO T-Beam 163

https://www.elektronik-kompendium.de/sites/raspberry-pi/2205191.htm
https://www.freecodecamp.org/news/the-easy-way-to-set-up-docker-on-a-raspberry-pi-7d24ced073ef/
https://github.com/FraunhoferIOSB/FROST-Server
https://github.com/FraunhoferIOSB/FROST-Server/wiki
https://www.duckdns.org/install.jsp
https://github.com/LilyGO/TTGO-T-Beam
https://www.espressif.com/en/products/hardware/esp32/overview
https://www.espressif.com/en/products/hardware/esp32/overview

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 35: TTGO T-Beam from Wemos. TTGO T-Beam pinout, example code.

USB/Serial converter to another serial port (UART). The WiFi and Bluetooth antenna are mounted on the TTGO T-
Beam board. A small GPS antenna is connected via a pigtail to an U.FL / IPX connector. The LoRa antenna has to be
connected via an SMA-type connector. The TTGO T-Beam is available from Chinese sellers for around 23 C (I have
not found a European shop where it can be bought yet).

The LoRa transmitter and receiver is encapsulated within a LoRa module. It uses the LoRa chip SX1276 from the
company Semtech and is dedicated to the 868 MHz frequency band. The LoRa module is connected via SPI interface to
the microcontroller and all of the required connections of the LoRa transceiver pins with the microcontroller are already
built-in on the TTGO T-Beam board. Since the module only implements the LoRa physical layer, the LoRaWAN
protocol stack must be implemented in software on the microcontroller. We are using the Arduino library LMIC for
that purpose (see below). The implemented LoRaWAN functionality is compatible with LoRaWAN Class A/C.

Sensor

While the GPS module of the TTGO T-Beam is labelled as a uBlox NEO-6 module, this does not seem to be true. The
module seems to be of a Chinese brand instead that is not fully compatible with the uBlox NEO-6.

The embedded uBlox EVA 8M GPS module is a standard precision GNSS receiver with 72 channels supporting
GPS and GLONASS. The module is capable to report up to 18 positions per second (18 Hz). It is connected to the
microcontroller via I2C bus and supports different power saving modes. A detailed explanation of the module is given
in the uBlox EVA 8M datasheet.

Display

We have attached a 0.96 in monochrome OLED display to the I2C bus of the TTGO T-Beam module. The display is
using an SD1306 controller and has a resolution of 64 x 64 pixels.

164 Chapter 2. Contents

http://tinymicros.com/wiki/TTGO_T-Beam
https://github.com/LilyGO/TTGO-T-Beam
https://www.u-blox.com/en/product/eva-8m-sip
https://www.u-blox.com/sites/default/files/EVA-8M_DataSheet_%28UBX-16009928%29.pdf

TUM-GIS Sensor Nodes, Release v0.0.1

Fig. 36: The Wemos TTGO T-Beam with a 2200 mAh 18650 lithium polymer (LiPo) battery (in the battery holder on
the backside of the board) with attached OLED display.

2.12.2 Software

The section is still to be written.

2.12.3 Services

The section is still to be written.

2.12.4 Code files

Listing 38: Arduino Sketch for Wemos TTGO T-Beam sensor node

1 No source code yet!

Listing 39: TTN payload decoder for Wemos TTGO T-Beam sensor node

1 Yet to be written

2.12.5 References

• Wemos TTGO T-Beam pinout, libraries, examples

• TTGO T-Beam TinyMicros Wiki (links to schematics, GPS datasheet)

2.12. Wemos TTGO T-Beam 165

https://github.com/LilyGO/TTGO-T-Beam
http://tinymicros.com/wiki/TTGO_T-Beam

TUM-GIS Sensor Nodes, Release v0.0.1

• TTGO T-Beam – Kompakter Knochen zum Mappen

• TTNMapper on the TTGO T-Beam

• TTNMapper on the TTGO T-Beam with Deep Sleep

• Wifi & BLE driven passenger flow metering with cheap ESP32 boards

166 Chapter 2. Contents

https://www.bjoerns-techblog.de/2018/10/ttgo-t-beam-kompakter-knochen-zum-mappen/
https://github.com/DeuxVis/Lora-TTNMapper-T-Beam
https://github.com/PiAir/Lora-TTNMapper-T-Beam
https://github.com/cyberman54/ESP32-Paxcounter

CHAPTER 3

Indices and tables

• genindex

• search

167

	Contact and contribution
	Contents
	Solar powered Seeeduino
	Hardware
	Wiring setup
	Software
	Services
	Code files
	References

	Indoor Ambient Monitoring
	Hardware
	Wiring setup
	Software
	Services
	Code files
	References

	Feather M0 LoRa in TFA Housing
	Hardware
	Wiring setup
	Software
	Services
	Code files
	References

	Adafruit 32u4 LoRa
	Hardware
	Software
	Services
	Code files
	References

	Adafruit 32u4 LoRa with Display
	Hardware
	Software
	Services
	Code files
	References

	Adafruit M0 LoRa
	Hardware
	Software
	Services
	Code files
	References

	Dragino LoRa Arduino Shield
	Hardware
	Software
	Services
	Code files
	References

	Pycom LoPy4
	Hardware
	Software
	Services
	Code files
	References

	Seeeduino LoRaWAN
	Hardware
	Software
	Services
	Code files
	References

	Seeeduino LoRaWAN with GPS
	Hardware
	Software
	Services
	Code files
	References

	All-on-one Rpi Node
	Hardware
	Wiring setup
	Software
	Services
	Code files
	References

	Wemos TTGO T-Beam
	Hardware
	Software
	Services
	Code files
	References

	Indices and tables

